12 resultados para Brain injury
em Brock University, Canada
Resumo:
The purpose of the current undertaking was to study the electrophysiological properties of the sleep onset period (SOP) in order to gain understanding into the persistent sleep difficulties of those who complain of insomnia following mild traumatic brain injury (MTBI). While many believe that symptoms of post concussion syndrome (PCS) following MTBI resolve within 6 to 12 months, there are a number of people who complain of persistent sleep difficulty. Two models were proposed which hypothesize alternate electrophysiological presentations of the insomnia complaints of those sustaining a MTBI: 1) Analyses of standard polysomnography (PSG) sleep parameters were conducted in order to determine if the sleep difficulties of the MTBI population were similar to that of idiopathic insomniacs (i.e. greater proportion ofREM sleep, reduced delta sleep); 2) Power spectral analysis was conducted over the SOP to determine if the sleep onset signature of those with MTBI would be similar to psychophysiological insomniacs (characterized by increased cortical arousal). Finally, exploratory analyses examined whether the sleep difficulties associated with MTBI could be explained by increases in variability of the power spectral data. Data were collected from 9 individuals who had sustained a MTBI 6 months to 5 years earlier and reported sleep difficulties that had arisen within the month subsequent to injury and persisted to the present. The control group consisted of 9 individuals who had experienced neither sleep difficulties, nor MTBI. Previous to spending 3 consecutive uninterrupted nights in the sleep lab, subjects completed questionnaires regarding sleep difficulties, adaptive functioning, and personality.
Resumo:
Traumatic brain injury (TBI) often affects social adaptive functioning and these changes in social adaptability are usually associated with general damage to the frontal cortex. Recent evidence suggests that certain neurons within the orbitofrontal cortex appear to be specialized for the processing of faces and facial expressions. The orbitofrontal cortex also appears to be involved in self-initiated somatic activation to emotionally-charged stimuli. According to Somatic Marker Theory (Damasio, 1994), the reduced physiological activation fails to provide an individual with appropriate somatic cues to personally-relevant stimuli and this, in turn, may result in maladaptive behaviour. Given the susceptibility of the orbitofrontal cortex in TBI, it was hypothesized that impaired perception and reactivity to socially-relevant information might be responsible for some of the social difficulties encountered after TBL Fifteen persons who sustained a moderate to severe brain injury were compared to age and education matched Control participants. In the first study, both groups were presented with photographs of models displaying the major emotions and either asked to identify the emotions or simply view the faces passively. In a second study, participants were asked to select cards from decks that varied in terms of how much money could be won or lost. Those decks with higher losses were considered to be high-risk decks. Electrodermal activity was measured concurrently in both situations. Relative to Controls, TBI participants were found to have difficulty identifying expressions of surprise, sadness, anger, and fear. TBI persons were also found to be under-reactive, as measured by electrodermal activity, while passively viewing slides of negative expressions. No group difference,in reactivity to high-risk card decks was observed. The ability to identify emotions in the face and electrodermal reactivity to faces and to high-risk decks in the card game were examined in relationship to social monitoring and empathy as described by family members or friends on the Brock Adaptive Functioning Questionnaire (BAFQ). Difficulties identifying negative expressions (i.e., sadness, anger, fear, and disgust) predicted problems in monitoring social situations. As well, a modest relationship was observed between hypo-arousal to negative faces and problems with social monitoring. Finally, hypo-arousal in the anticipation of risk during the card game related to problems in empathy. In summary, these data are consistent with the view that alterations in the ability to perceive emotional expressions in the face and the disruption in arousal to personally-relevant information may be accounting for some of the difficulties in social adaptation often observed in persons who have sustained a TBI. Furthermore, these data provide modest support for Damasio's Somatic Marker Theory in that physiological reactivity to socially-relevant information has some value in predicting social function. Therefore, the assessment of TBI persons, particularly those with adaptive behavioural problems, should be expanded to determine whether alterations in perception and reactivity to socially-relevant stimuli have occurred. When this is the case, rehabilitative strategies aimed more specifically at these difficulties should be considered.
Resumo:
This study examined work engagement among brain injury rehabilitation professionals with specific attention to how they engage with their work (the extent to which they experience vigor, dedication, and absorption while working) and how they engage with people (the degree to which they are welcoming towards others and demonstrate integrity, responsibility, transparency). This study also tested a theoretical model of work engagement that predicted a relationship between engagement and personal, interpersonal, and organizational capacity. Eighty-one staff employed in a hospital-based brain injury program participated in the study. A quantitative self-report survey was used to measure participants' levels of capacity and engagement and a qualitative question was included to identify initiatives that could be introduced to enhance job performance. As predicted by the model, there were statistically significant positive correlations among all three capacity variables and engagement with work and statistically significant positive correlations between ethical engagement and personal and interpersonal capacity. The results of the qualitative data analysis revealed three broad categories of recommendations for improving job performance (more learning opportunities, more resources to support professional development, and the need to build greater team cohesion). These findings provide initial support for a theoretical model that emphasizes the link between capacity and engagement, which could be used to guide theory-driven interventions aimed at improving the work environment.
Resumo:
Individuals who have sustained a traumatic brain injury (TBI) often complain of t roubl e sleeping and daytime fatigue but little is known about the neurophysiological underpinnings of the s e sleep difficulties. The fragile sleep of thos e with a TBI was predicted to be characterized by impairments in gating, hyperarousal and a breakdown in sleep homeostatic mechanisms. To test these hypotheses, 20 individuals with a TBI (18- 64 years old, 10 men) and 20 age-matched controls (18-61 years old, 9 men) took part in a comprehensive investigation of their sleep. While TBI participants were not recruited based on sleep complaint, the fmal sample was comprised of individuals with a variety of sleep complaints, across a range of injury severities. Rigorous screening procedures were used to reduce potential confounds (e.g., medication). Sleep and waking data were recorded with a 20-channel montage on three consecutive nights. Results showed dysregulation in sleep/wake mechanisms. The sleep of individuals with a TBI was less efficient than that of controls, as measured by sleep architecture variables. There was a clear breakdown in both spontaneous and evoked K-complexes in those with a TBI. Greater injury severities were associated with reductions in spindle density, though sleep spindles in slow wave sleep were longer for individuals with TBI than controls. Quantitative EEG revealed an impairment in sleep homeostatic mechanisms during sleep in the TBI group. As well, results showed the presence of hyper arousal based on quantitative EEG during sleep. In wakefulness, quantitative EEG showed a clear dissociation in arousal level between TBls with complaints of insomnia and TBls with daytime fatigue. In addition, ERPs indicated that the experience of hyper arousal in persons with a TBI was supported by neural evidence, particularly in wakefulness and Stage 2 sleep, and especially for those with insomnia symptoms. ERPs during sleep suggested that individuals with a TBI experienced impairments in information processing and sensory gating. Whereas neuropsychological testing and subjective data confirmed predicted deficits in the waking function of those with a TBI, particularly for those with more severe injuries, there were few group differences on laboratory computer-based tasks. Finally, the use of correlation analyses confirmed distinct sleep-wake relationships for each group. In sum, the mechanisms contributing to sleep disruption in TBI are particular to this condition, and unique neurobiological mechanisms predict the experience of insomnia versus daytime fatigue following a TBI. An understanding of how sleep becomes disrupted after a TBI is important to directing future research and neurorehabilitation.
Resumo:
Acquired brain injury (ABI) is the leading cause of death and disability amongst children and adolescents andpresents itself with challenges associated in cognitive, social, emotional, and behavioural domains. These changes may interfere with academic performance and social inclusion, influencing self-esteem and personal success. The current study examined a subset of data to capture the sense of academic and social belonging for students with ABI as a function of the classroom teachers’ subjective perception of ability, their ABI knowledge, and student identification. Overall, a discrepancy was found between educators’ subjective ratings of student performance and students’ neurocognitive capacity. Educator knowledge and identification of ABI influenced student success in academic and social domains independent of teaching approach. This research has implications for the identification of ABI in the classroom and related challenges students experience. Educators are underprepared for the reintegration of students returning to school and lack appropriate knowledge and strategies to accommodate individual needs.
Resumo:
Client-directed long-term rehabilitative goals and life satisfaction following head injury emphasize the importance of social inclusion, rather than cognitive or physical, outcomes. However, very little research has explored the socio-emotional factors that pose as barriers to social reintegration following injury. This study investigates social barriers following head injury (i.e., decision-making - Iowa Gambling Task [IGT] and mood – depression) and possible amelioration of those challenges (through treatment) in both highly functioning university students with and without mild head injury (MHI) and in individuals with moderate traumatic brain injury (TBI). An arousal manipulation using emotionally evocative stimuli was introduced to manipulate the subject’s physiological arousal state. Seventy-five university students (37.6% reporting a MHI) and 11 patients with documented moderate TBI were recruited to participate in this quasi-experimental study. Those with head injury were found to be physiologically underaroused (on measures of electrodermal activation [EDA] and pulse) and were less sensitive to the negative effects of punishment (i.e., losses) in the gambling task than those without head injury, with greater impairment being observed for the moderate TBI group. The arousal manipulation, while effective, was not able to maintain a higher state of arousal in the injury groups across trials (i.e., their arousal state returned to pre-manipulation levels more quickly than their non-injured cohort), and, subsequently, a performance improvement was not observed on the IGT. Lastly, head injury was found to contribute to the relationship between IGT performance and depressive symptom acknowledgment and mood status in persons with head injury. This study indicates the possible important role of physiological arousal on socio- emotional behaviours (decision-making, mood) in persons with even mild, non-complicated head injuries and across the injury severity continuum.
Resumo:
Mild head injury (MHI) is a serious cause of neurological impairment as is evident by the substantial percentage (15%) of individuals who remain symptomatic at least 1-year following "mild" head trauma. However, there is a paucity of research investigating the social consequences following a MHI. The first objective of this study was to examine whether measures of executive functioning were predictive of specific forms of antisocial behaviour, such as reactive aggression, impulsive antisocial behaviour, behavioural disinhibition, and deficits in social awareness after controlling for the variance accounted for by sex differences. The second objective was to investigate whether a history of MHI was predictive of these same social consequences after controlling for both sex differences and executive functioning. Ninety university students participated in neuropsychological testing and filled out self-report questionnaires. Fifty-two percent of the sample self-reported experiencing a MHI. As expected, men were more reactively aggressive and antisocial than women. Furthermore, executive dysfunction predicted reactive aggression and impulsive antisocial behaviour after controlling for sex differences. Finally, as expected, MHI status predicted reactive aggression, impulsive antisocial behaviour, and behavioural disinhibition after controlling for sex and executive fimctioning. MHI status and executive functioning did not predict social awareness or sensitivity to reward or punishment. These results suggest that incurring a MHI has serious social consequences that mirror the neurobehavioural profile following severe cases of brain injury. Therefore, the social sequelae after MHI imply a continuum of behavioural deficits between MHI and more severe forms of brain injury.
Resumo:
A large variety of social signals, such as facial expression and body language, are conveyed in everyday interactions and an accurate perception and interpretation of these social cues is necessary in order for reciprocal social interactions to take place successfully and efficiently. The present study was conducted to determine whether impairments in social functioning that are commonly observed following a closed head injury, could at least be partially attributable to disruption in the ability to appreciate social cues. More specifically, an attempt was made to determine whether face processing deficits following a closed head injury (CHI) coincide with changes in electrophysiological responsivity to the presentation of facial stimuli. A number of event-related potentials (ERPs) that have been linked specifically to various aspects of visual processing were examined. These included the N170, an index of structural encoding ability, the N400, an index of the ability to detect differences in serially presented stimuli, and the Late Positivity (LP), an index of the sensitivity to affective content in visually-presented stimuli. Electrophysiological responses were recorded while participants with and without a closed head injury were presented with pairs of faces delivered in a rapid sequence and asked to compare them on the basis of whether they matched with respect to identity or emotion. Other behavioural measures of identity and emotion recognition were also employed, along with a small battery of standard neuropsychological tests used to determine general levels of cognitive impairment. Participants in the CHI group were impaired in a number of cognitive domains that are commonly affected following a brain injury. These impairments included reduced efficiency in various aspects of encoding verbal information into memory, general slower rate of information processing, decreased sensitivity to smell, and greater difficulty in the regulation of emotion and a limited awareness of this impairment. Impairments in face and emotion processing were clearly evident in the CHI group. However, despite these impairments in face processing, there were no significant differences between groups in the electrophysiological components examined. The only exception was a trend indicating delayed N170 peak latencies in the CHI group (p = .09), which may reflect inefficient structural encoding processes. In addition, group differences were noted in the region of the N100, thought to reflect very early selective attention. It is possible, then, that facial expression and identity processing deficits following CHI are secondary to (or exacerbated by) an underlying disruption of very early attentional processes. Alternately the difficulty may arise in the later cognitive stages involved in the interpretation of the relevant visual information. However, the present data do not allow these alternatives to be distinguished. Nonetheless, it was clearly evident that individuals with CHI are more likely than controls to make face processing errors, particularly for the more difficult to discriminate negative emotions. Those working with individuals who have sustained a head injury should be alerted to this potential source of social monitoring difficulties which is often observed as part of the sequelae following a CHI.
Resumo:
We examined the cognitive and emotional sequelae following mild head injury (MHI; e.g., concussion) in high-functioning individuals and whether persons with MHI pre~ent, both physiologically and via self-report, in a manner different from (i.e., underaroused) that of persons who have no history of head injury. We also investigated the effect arousal state ~as on the cognitive performance of this population. Using a quasiexperimental research design (N = 91), we examined changes in attention, working memory, and cognitive flexibility (subtests ofthe WAIS-III, 1997,WMS-III, 1997, & DKEFS, 2002) as a function of manipulated arousal (i.e., induced psychosocial stress/activation; reduced activation/relaxation). In addition to self-reported arousal and state anxiety (State-Trait Anxiety Inventory; Speilberger, 1983a) measures, physiological indices of arousal state (i.e., electrodermal responsivity, heart rate, and respiration activity) were recorded (via Polygraph Professional Suite, 2008) across a 2.5 hour interval while completing various cognitive tasks. Students also completed the Post-concussive Symptom Checklist (Gouvier et aI., 1992). The results demonstrate that university students who report a history ofMHI (i.e., "altered state of consciousness") experience significantly lower levels of anxiety, were physiologically underaroused, and were less responsive to stressors in their environment, compared to their non-~HI cohorts. As expected, cognitive flexibility (but not other neuropsychological measures of cognition) was advantaged with increased stress, and disadvantaged with reduced stress, in persons with reported MHI, but not for those without reported MHI which provided limited support for our hypothesis. Further, university students who had no complaints related to their previous MHI endorsed a greater number of traditional post-concussive symptoms in terms of intensity, duration and frequency as compared to students who did not report a MHI. The underarousal in traumatic brain injury has been associated with (ventromedial prefrontal cortex) VMPFC disruption and may be implicated in MHI generally. Students who report sustaining a previous MHI may be less able to physiologically respond and/or cognitively appraise, stressful experiences as compared to their no-MHI cohort and experience persistent, long-lasting consequences despite the subtle nature of a history of head injury.
Resumo:
Recent research has shown that University students with a history of self-reported mild head injury (MHI) are more willing to endorse moral transgressions associated with personal, relative to impersonal, dilemmas (Chiappetta & Good, 2008). However, the terms 'personal' and 'impersonal' in these dilemmas have functionally confounded the 'intentionality' of the transgression with the 'personal impact' or 'outcome' of the transgression. In this study we used a modified version of these moral dilemmas to investigate decision-making and sympathetic nervous system responsivity. Forty-eight University students (24 with MHI, 24 with no-MHI) read 24 scenarios depicting moral dilemmas varying as a function of 'intentionality' of the act (deliberate or unintentional) and its 'outcome' (physical harm, no physical harm, non-moral) and were required to rate their willingness to engage in the act. Physiological indices of arousal (e.g., heart rate - HR) were recorded throughout. Additionally, participants completed several neurocognitive tests. Results indicated significantly lowered HR activity at baseline, prior to, and during (but not after) making a decision for each type of dilemma for participants with MHI compared to their non-injured cohort. Further, they were more likely than their cohort to authorize personal injuries that were deliberately induced. MHI history was also associated with better performance on tasks of cognitive flexibility and attention; while students' complaints of postconcussive symptoms and their social problem solving abilities did not differ as a function of MHI history. The results provide subtle support for the hypothesis that both emotional and cognitive information guide moral decision making in ambiguous and emotionally distressing situations. Persons with even a MHI have diminished physiological arousal that may reflect disruption to the neural pathways of the VMPFC/OFC similar to those with more severe injuries.
Resumo:
Despite the increase in research regarding mild head injury (MHI), relatively little has investigated whether, or the extent to which, premorbid factors (i.e., personality traits) influence, or otherwise account for, outcomes post-MHI. The current study examined the extent to which postinjury outcome after MHI is analogous to the outcome post-moderate or- severe traumatic brain injury (by comparing the current results to previous literature pertaining to individuals with more severe brain injuries) and whether these changes in function and behaviour are solely, or primarily, due to the injury, or reflect, and are possibly a consequence of, one’s preinjury status. In a quasi-experimental, test-retest design, physiological indices, cognitive abilities, and personality characteristics of university students were measured. Since the incidence of MHI is elevated in high-risk activities (including high-risk sports, compared to other etiologies of MHI; see Laker, 2011) and it has been found that high-risk athletes present with unique, risk-taking behaviours (in terms of personality; similar to what has been observed post-MHI) compared to low-risk and non-athletes. Seventy-seven individuals (42% with a history of MHI) of various athletic statuses (non-athletes, low-risk athletes, and high-risk athletes) were recruited. Consistent with earlier studies (e.g., Baker & Good, 2014), it was found that individuals with a history of MHI displayed decreased physiological arousal (i.e., electrodermal activation) and, also, endorsed elevated levels of sensation seeking and physical/reactive aggression compared to individuals without a history of MHI. These traits were directly associated with decreased physiological arousal. Moreover, athletic status did not account for this pattern of performance, since low- and high-risk athletes did not differ in terms of personality characteristics. It was concluded that changes in behaviour post-MHI are associated, at least in part, with the neurological and physiological compromise of the injury itself (i.e., physiological underarousal and possible subtle OFC dysfunction) above and beyond influences of premorbid characteristics.
Resumo:
We examined the role of altered emotional functioning across the spectrum of injury severity (mild head injury [MHI], moderate/severe traumatic brain injury [TBI]), its implications for social behaviours, and the effect of modifying arousal and its relation to cognitive performance. In the first study (N = 230), students with self-reported MHI endorsed engaging in socially unacceptable and erratic behaviours significantly more often than did those with no MHI. We did not find significant differences between the groups in the measure of emotional intelligence (EI); however, for students who reported a MHI, scores on the EI measure significantly predicted reports of socially unacceptable behaviours such that lower scores predicted poorer social functioning, accounting for approximately 20% of the variance. Also, the experience of postconcussive symptoms was found to be significantly greater for students with MHI relative to their peers. In the second study (N = 85), we further examined emotional underarousal in terms of physiological (i.e., electrodermal activation [EDA]) and self-reported responsivity to emotionally-evocative picture stimuli. Although the valence ratings of the stimuli did not differ between students with and without MHI as we had expected, we found evidence of reduced and/or indiscriminate emotional responding to the stimuli for those with MHI which mimics that observed in other studies for persons with moderate/severe TBI. We also found that emotional underarousal followed a gradient of injury severity despite reporting a pattern of experiencing more life stressors. In the third study (N = 81), we replicated our findings of emotional underarousal for those with head trauma and also uniquely explored neuroendocrine aspects (salivary cortisol; cortisol awakening response [CAR]) and autonomic indices (EDA) of emotional dysregulation in terms of stress responsivity across the spectrum of injury severity (MHI [n = 32], moderate/severe TBI [n = 9], and age and education matched controls [n = 40]). Although the manipulation was effective in modifying arousal state in terms of autonomic and self-reported indices, we did not support our hypothesis that increased arousal would be related to improved performance on cognitive measures for those with prior injury. To our knowledge, this is the only study to examine the CAR with this population. Repeated measure analysis revealed that, upon awakening, students with no reported head trauma illustrated the typical CAR increase 45 minutes after waking, whereas, students who had a history of either mild head trauma or moderate/severe TBI demonstrated a blunted CAR. Thus, across the three studies we have provided evidence of emotional underarousal, its potential implications for social interactions, and also have identified potentially useful indices of dysregulated stress responsivity regardless of injury severity.