3 resultados para Botrytis cinerea
em Brock University, Canada
Resumo:
Botrytis cinerea isolates collected from Niagara region were treated with different concentrations of the fiingicide, iprodione to test their sensitivity to this fungicide. These Botrytis cinerea isolates were divided into two groups according to their sensitivity to iprodione. Those isolates whose growth was inhibited by iprodione at concentrations < 2|i,g/nil were classified as sensitive isolates. Isolates that were able to show considerable growth at 2|j,g/ml iprodione were classified as resistant isolates. Resistant and sensitive isolates were compared for their morphological and growth characteristics, conidial germination, virulence on grape berries and protein banding profiles. The fungicide iprodione at a concentration of 2|xg/nil inhibited mycelial growth, sporulation and conidial germination of sensitive isolates but not those of resistant isolates. The inhibitory effect of the fungicide was greater on mycelial growth than on conidia germination of the sensitive isolates. Sensitive isolates produced no sclerotia whereas resistant isolates produced large number of sclerotia. The fungicide iprodione affected sclerotial production in the resistant isolates. The number of sclerotia was decreased by the increase of iprodione in the medium. Sporulation of resistant isolates was improved significantly in the presence of iprodione. The resistant isolates were as virulent as the sensitive isolates on grape berries. The sensitive and resistant isolates showed similar protein banding profiles in the absence of iprodione in polyacrylamide gel electrophoresis studies. Similar protein profiles were also observed when these isolates were grown in the presence of low iprodione concentration (0.5|ig/nil). However, in the presence of concentration (0.5|ig/nil). However, in the presence of iprodione at concentration of 5|Xg/nil, one protein band with approximate molecular weight of 83 KDa was present in the growing resistant isolates (and the controls) but was missing in the inhibited sensitive isolates.
Resumo:
A Gram negative aerobic flagellated bacterium with fungal growth inhibitory properties was isolated from a culture of Trichoderma harzianum. According to its cultural characteristics and biochemical properties it was identified as a strain of Alcaligenes (aeca/is Castellani and Chalmers. Antisera prepared in Balbc mice injected with live and heat-killed bacterial cells gave strong reactions with the homologous immunogen and with ATCC 15554, the type strain of A. taeca/is, but not with Escherichia coli or Enterobacter aerogens in immunoprecipitation and dot immunobinding assays. Growth of Botrytis cinerea Pers. and several other fungi was significantly affected when co-cultured with A. taeca/is on solid media. Its detrimental effect on germination and growth of B. cinerea has been found to be associated with antifungal substances produced by the bacterium and released into the growth medium. A biotest for the antibiotic substances, based on their inhibitory effect on germination of B. cinerea conidia, was developed. This biotest was used to study the properties of these substances, the conditions in which they are produced, and to monitor the steps of their separation during extraction procedures. It has been found that at least two substances could be involved in the antagonistic interaction. One of these is a basic volatile substance and has been identified as ammonia. The other substance is a nonvolatile, dialysable, heat stable, polar compound released into the growth medium. After separation of growth medium samples by Sephadex G-10 column chromatography a single peak with a molecular weight below 700 Daltons exhibited inhibitory activity. From its behaviour in electrophoretic separation in agarose gels it seems that this is a neutral or slightly positively charged.
Resumo:
The aggressive mushroom competitor, Trichoderma harzianum biotype Th4, produces volatile antifungal secondary metabolites both in culture and during the disease cycle in compost. Th4 cultures produced one such compound only when cultured in the presence of Agaricus bisporus mycelium or liquid medium made from compost colonised with A. bisporus. This compound has TLC and UVabsorption and characteristics indicating that it belongs to a class of pyrone antibiotics characterised from other T. harzianum biotypes. UV absorption spectra indicated this compound was not 6-pentyl-2H-pyran-one (6PAP), the volatile antifungal metabolite widely described in Th1. Furthermore, this compound was not produced by Th1 under any culture conditions. Mycelial growth of A. bisporus, Botrytis cinerea and Sclerotium cepivorum was inhibited in the presence of this compound through volatility , diffusion and direct application. This indicates that Th4 produces novel, volatile, antifungal metabolites in the presence of A. bisporus that are likely involved in green mould disease of mushroom crops.