5 resultados para Boolean Functions, Nonlinearity, Evolutionary Computation, Equivalence Classes

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layout planning is a process of sizing and placing rooms (e.g. in a house) while a t t empt ing to optimize various criteria. Often the r e are conflicting c r i t e r i a such as construction cost, minimizing the distance between r e l a t ed activities, and meeting the area requirements for these activities. The process of layout planning ha s mostly been done by hand, wi th a handful of a t t empt s to automa t e the process. Thi s thesis explores some of these pa s t a t t empt s and describes several new techniques for automa t ing the layout planning process using evolutionary computation. These techniques a r e inspired by the existing methods, while adding some of the i r own innovations. Additional experimenLs are done to t e s t the possibility of allowing polygonal exteriors wi th rectilinear interior walls. Several multi-objective approaches are used to evaluate and compare fitness. The evolutionary r epr e s ent a t ion and requirements specification used provide great flexibility in problem scope and depth and is worthy of considering in future layout and design a t t empt s . The system outlined in thi s thesis is capable of evolving a variety of floor plans conforming to functional and geometric specifications. Many of the resulting plans look reasonable even when compared to a professional floor plan. Additionally polygonal and multi-floor buildings were also generated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the machinery of gene regulation to control gene expression has been one of the main focuses of bioinformaticians for years. We use a multi-objective genetic algorithm to evolve a specialized version of side effect machines for degenerate motif discovery. We compare some suggested objectives for the motifs they find, test different multi-objective scoring schemes and probabilistic models for the background sequence models and report our results on a synthetic dataset and some biological benchmarking suites. We conclude with a comparison of our algorithm with some widely used motif discovery algorithms in the literature and suggest future directions for research in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passive solar building design is the process of designing a building while considering sunlight exposure for receiving heat in winter and rejecting heat in summer. The main goal of a passive solar building design is to remove or reduce the need of mechanical and electrical systems for cooling and heating, and therefore saving energy costs and reducing environmental impact. This research will use evolutionary computation to design passive solar buildings. Evolutionary design is used in many research projects to build 3D models for structures automatically. In this research, we use a mixture of split grammar and string-rewriting for generating new 3D structures. To evaluate energy costs, the EnergyPlus system is used. This is a comprehensive building energy simulation system, which will be used alongside the genetic programming system. In addition, genetic programming will also consider other design and geometry characteristics of the building as search objectives, for example, window placement, building shape, size, and complexity. In passive solar designs, reducing energy that is needed for cooling and heating are two objectives of interest. Experiments show that smaller buildings with no windows and skylights are the most energy efficient models. Window heat gain is another objective used to encourage models to have windows. In addition, window and volume based objectives are tried. To examine the impact of environment on designs, experiments are run on five different geographic locations. Also, both single floor models and multi-floor models are examined in this research. According to the experiments, solutions from the experiments were consistent with respect to materials, sizes, and appearance, and satisfied problem constraints in all instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interior illumination is a complex problem involving numerous interacting factors. This research applies genetic programming towards problems in illumination design. The Radiance system is used for performing accurate illumination simulations. Radiance accounts for a number of important environmental factors, which we exploit during fitness evaluation. Illumination requirements include local illumination intensity from natural and artificial sources, colour, and uniformity. Evolved solutions incorporate design elements such as artificial lights, room materials, windows, and glass properties. A number of case studies are examined, including many-objective problems involving up to 7 illumination requirements, the design of a decorative wall of lights, and the creation of a stained-glass window for a large public space. Our results show the technical and creative possibilities of applying genetic programming to illumination design.