6 resultados para Blade of irrigation

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was devised to evaluate influences of irrigation and fertigation practices on Vitis vinifera and Vitis labruscana grapes in the Niagara Peninsula. A modified FAO Penman- Monteith evapotranspiration formula was used to calculate water budgets and schedule irrigations. Five deficit irrigation treatments (non-irrigated control; deficits imposed postbloom, lag phase, and veraison; fiiU season irrigation) were employed in a Chardonnay vineyard. Transpiration rate (4-7 /xg H20/cmVs) and soil moisture data demonstrated that the control and early deficit treatments were under water stress throughout the season. The fiiU season irrigation treatment showed an 18% (2001) and 19% (2002) increase in yield over control due to increased berry weight. Soluble solids and wine quality were not compromised, and the fiiU season treatment showed similar or higher °Brix than all other treatments. Berry titratable acidity andpH also fell within acceptable levels for all five treatments. Irrigation/fertigation timing trials were conducted on Concord and Niagara vines in 2001- 02. The six Concord treatments consisted of a non-irrigated control, irrigation fi^om Eichhom and Lorenz (EL) stage 12 to harvest, and four fertigation treatments which applied 70 kg/ha urea. The nine Niagara treatments included a non-irrigated control, two irrigated treatments (ceasing at veraison and harvest, respectively) and six fertigation treatments of various durations. Slight yield increases (ca. 10% in Concord; 29% in Niagara) were accompanied by small decreases in soluble solids (1.5°Brix), and methyl anthranilate concentrations. Transpiration rate and soil moisture (1 1.9-16.3%) data suggested that severe water stress was present in these Toledo clay based vineyards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several irrigation treatments were evaluated on Sovereign Coronation table grapes at two sites over a 3-year period in the cool humid Niagara Peninsula of Ontario. Trials were conducted in the Hippie (Beamsville, ON) and the Lambert Vineyards (Niagara-on-the-Lake, ON) in 2003 to 2005 with the objective of assessing the usefulness of the modified Penman-Monteith equation to accurately schedule vine irrigation needs. Data (relative humidity, windspeed, solar radiation, and temperature) required to precisely calculate evapotranspiration (ETq) were downloaded from the Ontario Weather Network. One of two ETq values (either 100 or 150%) were used in combination with one of two crop coefficients (Kc; either fixed at 0.75 or 0.2 to 0.8 based upon increasing canopy volume) to calculate the amount of irrigation water required. Five irrigation treatments were: un irrigated control; (lOOET) X Kc =0.75; 150ET X Kc =0.75; lOOET X Kc =0.2-0.8; 150ET X Kc =0.2-0.8. Transpiration, water potential (v|/), and soil moisture data were collected each growing seasons. Yield component data was collected and berries from each treatment were analyzed for soluble solids (Brix), pH, titratable acidity (TA), anthocyanins, methyl anthranilate (MA), and total volatile esters (TVE). Irrigation showed a substantial positive effect on transpiration rate and soil moisture; the control treatment showed consistently lower transpiration and soil moisture over the 3 seasons. Transpiration appeared accurately reflect Sovereign Coronation grapevines water status. Soil moisture also accurately reflected level of irrigation. Moreover, irrigation showed impact of leaf \|/, which was more negative throughout the 3 seasons for vines that were not irrigated. Irrigation had a substantial positive effect on yield (kg/vine) and its various components (clusters/vine, cluster weight, and berries/cluster) in 2003 and 2005. Berry weights were higher under the irrigated treatments at both sites. Berry weight consistently appeared to be the main factor leading to these increased yields, as inconsistent responses were noted for some yield variables. Soluble solids was highest under the ET150 and ET100 treatments both with Kc at 0.75. Both pH and TA were highest under control treatments in 2003 and 2004, but highest under irrigated treatments in 2005. Anthocyanins and phenols were highest under the control treatments in 2003 and 2004, but highest under irrigated treatments in 2005. MA and TVE were highest under the ET150 treatments. Vine and soil water status measurements (soil moisture, leaf \|/, and transpiration) confirmed that irrigation was required for the summers of 2003 and 2005 due to dry weather in those years. They also partially supported the hypothesis that the Penman-Monteith equation is useful for calculating vineyard water needs. Both ET treatments gave clear evidence that irrigation could be effective in reducing water stress and for improving vine performance, yield and fruit composition. Use of properly scheduled irrigation was beneficial for Sovereign Coronation table grapes in the Niagara region. Findings herein should give growers some strong guidehnes on when, how and how much to irrigate their vineyards.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of the study was to investigate the effect of skate blade radius of hollow (ROH) on anaerobic performance, specifically during the acceleration and stopping phases of an on-ice skating test. Fifteen, male Junior B hockey players (mean age 19 y ± 1.46) were recruited to participate. On-icc testing required each participant to complete an on-ice anaerobic performance test [Reed Repeat Skate (RRS)) on three separate days. During each on-ice test, the participant's skate blades were sharpened to one of three, randomly assigned, ROH values (0.63 cm, 1.27 cm, 1.90 cm). Performance times were recorded during each RRS and used to calculate anaerobic variables [anaerobic power (W), anaerobic capacity (W), and fatigue index (s, %)). Each RRS was video recorded for the purpose of motion analysis. Video footage was imported into Peak Motus™ to measure kinematic variables of the acceleration and stopping phases. The specific variables calculated from the acceleration phase were: average velocity over 6 m (m/s), average stride length (m), and mean stride rate (strides/s). The specific variables calculated from the stopping phase were: velocity at initiation of stopping (rn/s), stopping distance (m), stopping time (s). A repeated measures ANOV A was used to assess differences in mean performance and kinematic variables across the three selected hollows. Further analysis was conducted to assess differences in trial by trial performance and kinematic variables for all hollows. The primary findings of the study suggested that skate blade ROH can have a significant effect on kinematic variables, namely stride length and stride rate during the acceleration phase and stopping distance and stopping time during the stopping phase of an on-ice anaerobic performance test. During the acceleration phase, no significant difdifferences were found in SR and SL across the three selected hollows. Mean SR on the 1.27 cm hollow was significantly slower than both the 0.63 cm and 1.90 cm hollows and SL was significantly longer when skating on the 1.27 cm hollow in comparison to the 1.90 cm hollow. During the stopping phase, stopping distance on the 0.63 cm hollow (4.12 m ± 0.14) was significantly shorter than both the 1.27 cm hollow (4.43 m ± 0.08) (p < 0.05) and the 1.90 cm ho])ow (4.35 m ± 0.12) (p < 0.05). Mean ST was also significantly shorter when stopping on the 0.63 cm hollow then both the 1.27 cm and 1.90 cm hollows. Trial by trial results clearly illustrated the affect of fatigue on kinematic variables; AV, SR, IV decreased from trial 1 to 6. There was no significant effect on anaerobic performance variables during the RRS. Altering the skate blade ROH has a significant and practical affect on accelerating and stopping performance will be discussed in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary purpose of this study was to investigate the effect of skate blade shape on skating performance. A secondary purpose was to evaluate if a change in hollow shape can create additional effects on skating performance. Thirty-seven male ice hockey players (age=18 years, SD=3.4) participated. The intervention consisted of four sharpening trials assessed using three on-ice tests. Participant feedback was also assessed using a Likert scale questionnaire. Statistical analysis included within-subject repeated measures MANOVA of trial by skating variables (p≤0.05). Results revealed Contour 1 enhanced performance compared to baseline on six variables at varsity level and five variables at midget level. Contour 1 enhanced performance compared to Contour 2 on six variables at the varsity and midget levels. Contour 1 also scored highest on the feedback questionnaire. Findings of this study indicate that contouring is a necessary practice to achieve optimal skating performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of the study was to investigate the relative contribution of skate blade properties to on-ice skating speed. Thirty-two male ice hockey players (mean age = 19±2.65 yrs.) representing the Ontario Minor Hockey Association (OMHA; Midget AAA and Junior), Canadian Inter University Sport (CIS: Varsity), Ontario hockey league (OHL) and East Coast Hockey League (ECHL), and the playing positions of forwards (n=18) and defense (n=14) were recruited to participate. Skate related equipment worn by the players for the purpose of the research was documented and revealed that 80% of the players wore Bauer skates, Tuuk blade holders and LS2 skate blades. Subjects completed a battery of eight on-ice skating drills used to measure and compare two aspects of skating speed; acceleration [T1(s)] and total time to complete each drill [TT(s)] while skating on three skate blade conditions. The drills represented skills used in the game of hockey, both in isolation (e.g., forward skating, backward skating, stops and starts, and cornering) and in sequence to simulate the combination of skills used in a shift of game play. The three blade conditions consisted of (i) baseline, represented by the blades worn by the player throughout their current season of play; (ii) experimental blades (EB), represented by brand name experimental blades with manufacturers radius of contour and a standardized radius of hollow; and (iii) customized experimental blades (CEB), represented by the same brand name experimental blades sharpened to the players’ preference as identified in the baseline condition. No significant differences were found in acceleration time [T1(s)] or total time to complete [TT(s)] the isolated drills across blade conditions; however significant differences were revealed in both T1(s) and TT(s) measured during the execution of the sequenced drill across blade conditions. A iii Bonferroni post hoc test revealed that players skated significantly faster when skating on the CEB condition compared to the baseline condition (p≤.05). A questionnaire assessing subjects perceived comfort, confidence and effort expended while skating on the experimental blades revealed that players were significantly more comfortable when skating on the CEB versus the EB condition (p≤.05). Outcomes of the study provide evidence to suggest that the experimental skate blades customized with the players preferred blade sharpening characteristics results in faster skating speed in a combination drill representing skills performed in gameplay.