6 resultados para Bean - Plant residues in soil - Productivity

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intercropping systems are seen as advantageous as they can provide higher crop yield and diversity along with fewer issues related to pests and weeds than monocultures. However, plant interactions in intercropped crop species and between crops and weeds in these systems are still not well understood. The main objective of this study was to investigate interactions between onion (Allium cepa) and yellow wax bean (Phaseolus vulgaris) in monocultures and intercropping with and without the presence of a weed species, either Chenopodium album or Amaranthus hybridus. Another objective of this study was to compare morphological traits of C. album from two different populations (conventional vs. organic farms). Using a factorial randomized block design, both crop species were planted either in monoculture or intercropped with or without the presence of one of the two weeds. The results showed that intercropping onion with yellow wax bean increased the growth of onion but decreased the growth of yellow wax bean when compared to monocultures. The relative yield total (RYT) value was 1.3. Individual aboveground dry weight of both weed species under intercropping was reduced about 5 times when compared to the control. The poor growth of weeds in intercropping might suggest that crop diversification can help resist weed infestations. A common garden experiment indicated that C. album plants from the conventional farm had larger leaf area and were taller than those from the organic farm. This might be associated with specific evolutionary adaptation of weeds to different farming practices. These findings contribute to the fundamental knowledge of crop-crop interactions, crop-weed competition and adaptation of weeds to various conditions. They provide insights for the management of diversified cropping systems and integrated weed management as practices in sustainable agriculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A naturally occurring population of photosynthetic bacteria, located in the meromictic Crawford Lake, was examined during two field seasons (1979-1981). Primary production, biomass, light intensity, lake transparency, pH and bicarbonate concentration were all monitored during this period at selected time intervals. Analysis of the data indicated that (l4C) bacterial photosynthesis was potentially limited by the ambient bicarbonate concentration. Once a threshold value (of 270 mg/l) was reached a dramatic (2 to 10 fold) increase in the primary productivity of the bacteria was observed. Light intensity appeared to have very little effect on the primary productivity of the bacteria, even at times when analyses by Parkin and Brock (1980a) suggested that light intensity could be limiting (i.e., 3.0-5.0 ft. candles). Shifts in the absorption maxima at 430 nrn of the .bacteriochlorophyll spectrum suggested that changes in the species or strain composition of the photosynthetic bacteria had occurred during the summer months. It was speculated that these changes might reflect seasonal variation in the wavelength of light reaching the bacteria. Chemocline erosion did not have the same effect on the population size (biomass) of the photosynthetic bacteria in Crawford Lake (this thesis) as it did in Pink Lake (Dickman, 1979). In Crawford Lake the depth of the chemocline was lowered with no apparent loss in biomass (according to bacteriochlorophyll data). A reverse current was. proposed to explain the observation. The photosynthetic bacteria contributed a significant proportion (10-60%) of the lake1s primary productivitya Direct evidence was obtained with (14C) labelling of the photosynthetic bacteria, indica.ting that the zooplankton were grazing the photosynthetic bacteria. This indicated that some of the photosynthetic bacterial productivity was assimilated into the food chain of the lake. Therefore, it was concluded that the photosynthetic bacteria made a significant contribution to the total productivity of Crawford Lake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combined gas chromatography and mass spectrometry has been used to identify unknown residues in soils (especially pesticides). The effect of U.V. light on DDT and linuron and quantitative estimation of elemental sulfur in different soils has also been carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metarhizium is a soil-inhabiting fungus currently used as a biological control agent against various insect species, and research efforts are typically focused on its ability to kill insects. In section 1, we tested the hypothesis that species of Metarhizium are not randomly distributed in soils but show plant rhizosphere-specific associations. Results indicated an association of three Metarhizium species (Metarhizium robertsii, M. brunneum and M. guizhouense) with the rhizosphere of certain types of plant species. M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense, which was supported by in vitro experiments with grass root exudate. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types. In section 2, we explored the variation in the insect adhesin, Madl, and the plant adhesin, Mad2, in fourteen isolates of Metarhizium representing seven different species. Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions. Phylogenetic analysis of 5' EF-Ia, which is used for species identification, as well as Madl and Mad2 sequences demonstrated that the Mad2 phylogeny is more congruent with 5' EF-1a than Madl. This suggests Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation. While other abiotic and biotic factors cannot be excluded in contributing to divergence, it appears that plant associations have been the driving factor causing divergence among Metarhizium species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While nitrogen is critical for all plants, they are unable to utilize organically bound nitrogen in soils. Therefore, the majority of plants obtain useable nitrogen through nitrogen fixing bacteria and the microbial decomposition of organic matter. In the majority of cases, symbiotic microorganisms directly furnish plant roots with inorganic forms of nitrogen. More than 80% of all land plants form intimate symbiotic relationships with root colonizing fungi. These common plant/fungal interactions have been defined largely through nutrient exchange, where the plant receives limiting soil nutrients, such as nitrogen, in exchange for plant derived carbon. Fungal endophytes are common plant colonizers. A number of these fungal species have a dual life cycle, meaning that they are not solely plant colonizers, but also saprophytes, insect pathogens, or plant pathogens. By using 15N labeled, Metarhizium infected, wax moth larvae (Galleria mellonella) in soil microcosms, I demonstrated that the common endophytic, insect pathogenic fungi Metarhizium spp. are able to infect living soil borne insects, and subsequently colonize plant roots and furnish ts plant host with useable, insect-derived nitrogen. In addition, I showed that another ecologically important, endophytic, insect pathogenic fungi, Beauveria bassiana, is able to transfer insect-derived nitrogen to its plant host. I demonstrated that these relationships between various plant species and endophytic, insect pathogenic fungi help to improve overall plant health. By using 13C-labeled CO2, added to airtight plant growth chambers, coupled with nuclear magnetic resosnance spectroscopy, I was able to track the movement of carbon from the atmosphere, into the plant, and finally into the root colonized fungal biomass. This indicates that Metarhizium exists in a symbiotic partnership with plants, where insect nitrogen is exchanged for plant carbon. Overall these studies provide the first evidence of nutrient exchange between an insect pathogenic fungus and plants, a relationship that has potentially useful implications on plant primary production, soil health, and overall ecosystem stability.