11 resultados para BIS-(DIMETHOXYLPHOSPHATO) COPPER

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of Cu(PM)2(N03hoH20 (where PM is pyridoxamine, CSHI2N202) has been determined from three dimensional x-ray diffraction data. The crystals are triclinic, space group pI, a = 14.248 (2), b = 8.568 (1), c = 9.319 (1) 1, a = 94.08 (1), e = 89.73 (1), y~~ 99.18 (1)°, z = 2, jl(MoK) = 10.90 em-I, Po = 1.61 g/cm3 and Pc = 1.61 g/em3• The structure a was solved by Patterson techniques from data collected on a Picker 4-circle diffractometer to 26max = 45°. All atoms, including hydrogens, have been located. Anisotropic thermal parameters have been refined for all nonhydrogen atoms. For the 2390 independent reflections with F ? 3cr(F) , R = 0.0408. The results presented here provide the first detailed structural information of a metal complex with PM itself. The copper atoms are located on centres of symmetry and each is chela ted by two PM zwitterions through the amino groups and phenolate oxygen atoms. The zwitterionic form found in this structure involves the loss of a proton from the phenolate group and protonation of the pyridine ring nitrogen atoms. The two independent Cu(PM)2 moieties are symmetrically bridged by a single oxygen atom from one of the nitrate groups. The second nitrate group is not coordinated to the copper atoms but is central to an extensive hydrogen bonding network involving the water molecule and uncoordinated functional groups of PM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of theory to understand and facilitate catalytic enantioselective organic transformations involving copper and hydrobenzoin derivatives is reported. Section A details the use of theory to predict, facilitate, and understand a copper promoted amino oxygenation reaction reported by Chemler et al. Using Density Functional Theory (DFT), employing the hybrid B3LYP functional and a LanL2DZ/6-31G(d) basis set, the mechanistic details were studied on a N-tosyl-o-allylaniline and a [alpha]-methyl-[gamma]-alkenyl sulfonamide substrate. The results suggest the N-C bond formation proceeds via a cisaminocupration, and not through a radical-type mechanism. Additionally, the origin of diastereoselection observed with [alpha]-methyl-[gamma]-alkenyl sulfonamide arises from avoidance of unfavourable steric interactions between the methyl substituent and the N -protecting group. Section B details the computationally guided, experimental investigation of two hydrobenzoin derivatives as ligands/ catalysts, as well as the attempted synthesis of a third hydrobenzoin derivative. The bis-boronic acid derived from hydrobenzoin was successful as a Lewis acid catalyst in the Bignielli reaction and the Conia ene reaction, but provided only racemic products. The chiral diol derived from hydrobenzoin successfully increased the rate of the addition of diethyl zinc to benzaldehyde in the presence of titanium tetraisopropoxide, however poor enantioinduction was obseverved. Notably, the observed reactivity was successfully predicted by theoretical calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of the Sar Cheshmeh porphyry Cu-Mo deposit is related to the culmination of calc-alkaline igneous activity in the Kerman region. The deposit comprises a suite of Late Cenozoic intrusive sub-volcanic and extrusive rocks emplaced into a folded series of Eocene andesitic lavas and pyroclastic sediments. The earliest stage of magmatism was emplacement of a large granodiorite stock about 29 m.y.b.p. This was followed by intrusion of two separate porphyritic bodies at 15 (Sar Cheshrneh porphyry) and 12 m.y.b.p. (Late porphyry) and a series of sub-volcanic dikes between 12 and 9 m.y.b.p. Magmatic activity terminated with multi-phase extrusion of a Pelean dacitic dome complex between 10 and 2.8 m.y.b.p. The country rocks and the earlier porphyritic intrusions are pervasively altered to biotite-rich potassium silicate (metasomatic and hydrothermal) sericite-clay, phyllic and chlorite-clay, argillic assemblages. These grade outwards to an extensive propylitic zone. Within the ore body, the later intra-. and post-mineral dikes only reach the propylitic grade. At least three different sets of quartz veins are present, including a sericite-chlorite-quartz set which locally retrogrades pervasive secondary biotite to sericite. In the hypogene zone, metasomatic and hydrothermal alteration is related to all stages of magmatism but copper mineralization and veining are restricted to a period of 15 to 9 m.y.b.p.related to the early intrusive phases. The copper mineralization and silicate alteration do not fit a simple annular ring model but have been greatly modified by, 1. The existence of an ititial, outer ring, of metasomatic alteration overprinted by an inner.ring of hydrothermal alteration and, 2. later extensive dilating effects of intra- and post-mineral dikes. The hydrothermal clay mineral assemblage in the hypogene zone is illite-chlorite-kaolinite-smectite (beidellite). Preliminary studies indicate that the amount of each of these clays varies vertically and that hydrothermal zonation of clay minerals is possible. However, these minerals alter to illite-kaolinite assemblages in the supergene sulfide zone and to more kaolinite-rich assemblages in the supergene leached zone. Hydrothermal biotite breaks down readily in the supergene zone and is not well preserved in surface outcrops. The distribution of copper minerals in the supergene sulfide enrichment zone is only partly related to rock type being more dependent on topography and the availability of fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation comprises a comparison of experimental and theoretical dechanneling of MeV protons in copper single crystals. Dechanneling results when an ion's transverse energy increases to the value where the ion can undergo small impact parameter collisions with individual atoms. Depth dependent dechanneling rates were determined as functions of lattice temperature, ion beam energy and crystal axis orientation. Ion beam energies were IMeV and 2MeV,temperatures ranged from 35 K to 280 K and the experiment was carried out along both the (lOa) and <110) axes. Experimental data took the form of aligned and random Rutherford backscattered energy spectra. Dechanneling rates were extracted from these spectra using a single scattering theory that took explicit account of the different stopping powers experienced by channeled and dechanneled ions and also included a correction factor to take into account multiple scattering effects along the ion's trajectory. The assumption of statistical equilibrium and small angle scattering of the channeled ions allows a description of dechanneling in terms of the solution of a diffusion like equation which contains a so called diffusion function. The diffusion function is shown to be related to the increase in average transverse energy. Theoretical treatments of increase in average transverse energy due to collisions of projectiles with channel electrons and thermal perturbations in the lattice potential are reviewed. Using the diffusion equation and the electron density in the channel centre as a fitting parameter dechanneling rates are extracted. Excellent agreement between theory and experiment has been demonstrated. Electron densities determined in the fitting procedure appear to be realistic. The surface parameters show themselves to be good indicators of the quality of the crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability of molecular mechanics for modeling the wide distribution of bond angles and bond lengths characteristic of coordination complexes was investigatecl. This was the preliminary step for future modeling of solvent extraction. Several tin-phosphine oxide COrnI)le:){es were selected as the test groUl) for t.he d,esired range of geometry they eX!libi ted as \-vell as the ligands they cOD.tained r Wllich were c\f interest in connection with solvation. A variety of adjustments were made to Allinger's M:M2 force·-field ill order to inl.prove its performance in the treatment of these systems. A set of u,nique force constants was introduced for' those terms representing the metal ligand bond lengths, bond angles, and, torsion angles. These were significantly smaller than trad.itionallY used. with organic compounds. The ~1orse poteIlt.ial energ'Y function was incorporated for the M-X l')ond lE~ngths and the cosine harmonic potential erlerg-y function was invoked for the MOP bond angle. These functions were found to accomodate the wide distribution of observed values better than the traditional harmonic approximations~ Crystal packing influences on the MOP angle were explored thr"ollgh ttle inclusion of the isolated molecule withil1 a shell cc)ntaini11g tl1e nearest neigl1'bors duri.rlg energy rninimization experiments~ This was found to further improve the fit of the MOP angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rates and products have been determined for the thermal decomposition of bis diphenyl methyl peroxide and diphenyl methyl tert* butyl peroxide at 110@~145@C* The decomposition was uniformly unimolecular with activation energies for the bis diphenyl methyl peroxide in tetrachloroethylene* toluene and nitrobenzene 26,6* 28*3f and 27 Kcals/mole respectively. Diphenyl methyl tert* butyl peroxide showed an activation energy of 38*6 Kcals/mole* About 80-90% of the products in the case of diphenyl methyl peroxide could be explained by the concerted process, this coupled with the negative entropies of activation obtained is a conclusive evidence for the reaction adopting a major concerted path* All the products in the case of diphenyl methyl peroxide could be explained by known reactions of alkoxy radicals* About 80-85% of tert butanol and benzophenone formed suggested far greater cage disproportionation than diffusing apart* Rates of bis triphenyl methyl peroxide have been determined in tetrachloroethylene at 100-120@C* The activation energy was found to be 31 Kcals/mole*

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation and the isolation of fluoroboron salts, (D2BF2+)(PF6-), (DD'BF2+)(PF6-) and (D3BF2+)(PF6-)2, have been carried out. 1,8-Diazabicyclo [5,4.0]undec-7-ene (DBU) and 1,5-diazabicyclo[4,3,O]non-5-ene (DBN), extremely strong organic bases, were introduced into the fluoroboron cation systems and induced a complicated redistribution reaction in the D/BF3/BC13 systems. The result was the formation of all BFnCI4-n-, D.BFnCI3-n and fluoroboron cation species which were detected by 19p and 11B NMR spectrometry. The displacement reaction of CI- from these D.BFnCI3-n (n = 1 and 2) species by the second entering ligand is much faster than in other nitrogen donor containing systems which have been previously studied. Tetramethylguanidine, oxazolines and thiazolines can also produce similar reactions in D/BF3/BCI3 systems, but no significant BFnC4-n- species were observed. As well as influences of their basicity and their steric hindrance, N=C-R(X) (X = N, 0 or S) and N=C( X)2 (X = N or S) structures of ligands have significant effects on the fonnationof fluoroboron cations and the related NMR parameters. D3BF2+ and some D2BF2+ show the expected inertness, but (DBU)2BF2+ shows an interestingly high reactivity. (D2BF2+)(X-) formed from weak organic bases such as pyridine can react with stronger organic bases and form DD'BF2+ and D'2BF2+ in acetone or nitromethane. Fast atom bombardment mass spectrometry is doubly meaningful to this work. Firstly, FABMS can be directly applied to the complicated fluoroboron cation containing solution systems as an excellent complementary technique to multinuclear NMR. Secondly, the gas-phase ion substitution reaction of (D2BF2+)(PF6-) with the strong organic bases is successfully observed in a FABMS ion source when the B-N bond is not too strong in these cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron tribalide complexes of 1,1-bis(dimethylamino)ethylene (DME) , t etramethylurea (TMU), tetramethylguanidine (TMG) , and pentamethylguanidine (PMG) and also mixed boron t r ihalide adducts of DME have been investigated by 1H and 19F NMR spectroscopy. Both nitrogen and the C-Q-H carbon of DME are possible donor a toms to boron trihal ides but complexation has been found to occur only at carbon of DME. The initial adduct acts as a Bronsted acid and gives up a proton to free DME in solut ion. A side reaction in the DME-BF, system gives rise to trace amounts of a complex aSSigned as (DME)2BF2+. (DME)2BF2+ is produced in much larger quantities in t he DME-BF3-BC13 and DME-BF,-BBr, systems by reaction of free DME with DME:BF2X (X = Cl, Br). Restricted r otation about the C-N bonds of TMUlBC13 and n1U:BBr3 has been observed at low temperatures. This complements previous work in this system and confirms oxygen donation of TMU to boron trihalides . Restricted rotation at low temperatures also has been observed in DMEboron trihalide systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and studies of two classes of poly dentate ligands are presented as two projects. In project 1, four new carboxamide ligands have been synthesised via the condensation of 2,2',6,6'-tetrachloroformyl-4,4'-bipyridine or 2,6-dichloroformyl pyridine together with heterocyclic amines containing pyridine or pyrazole substituents. The coordination chemistry of these ligands has been investigated and studies have shown that with a Cu(II) salt, two carboxamide ligands LJ and L2 afford large clusters with stoichiometries [Cu8(L1)4Cl16].CHCl3.5H2O.7CH3OH (I) and [Cu9(L2)6Cl6].CH3OH.5H2O.(C2H5)3N (II) respectively. [molecular diagram availabel in pdf]. X-ray diffraction studies of cluster (I) reveal that it has approximate S4 symmetry and is comprised of four ligands and eight copper (II) centers. Here, coordination takes place via amide 0 atoms, and pyrazole nitrogens. This complex is the first reported example of an octanuclear copper cluster with a saddle-shaped structure. The second cluster comprises nine copper ions that are arranged in a cyclic array. Each ligand coordinates three copper centers and each copper ion shares two ligands to connect six ligands with nine copper ions. The amide nitrogens are completely deprotonated and both amide Nand 0 atoms coordinate the metal centres. The cluster has three-fold symmetry. There are six chloride ions, three of which are bridging two neighbouring Cu(II) centres. Magnetic studies of (I) and (II) reveal that both clusters display weak antiferromagnetic interactions between neighbouring Cu(II) centers at low temperature. In the second project, three complexes with stoichiometries [Fe[N302](SCN)2]2 (III), R,R-[Fe[N3O2](SCN)2 (IV) and R,R-]Fe[N3O2](CN)2] (V) were prepared and characterized, where [N302] is a pentadentate macrocycle. Complex (III) was prepared via the metal templated Schiff-base condensation of 2,2',6,6'-tetraacetyl-4,4'-bipyridine together with 3,6-dioxaoctane-I,8-diamine and comprises of a dimeric macro cycle where the two Fe(II) centres are in a pentagonal-bipyramidal environment with the [N302] ligands occupying the equatorial plane and two axial NCS ligands. Complexes (IV) and (V) were prepared via the condensation of 2,6-diacetylpyridine together with a chiral diamine in the presence of FeCh. The synthetic strategy for the preparation of the chiral diamine (4R,5R)-4,5-diphenyl-3,6-dioxa-I,8-octane-diamine was elucidated. The chirality of both macrocycles (IV) and (V) was probed by circular dichroism spectroscopy. The crystal structure of (IV) at 200 K contains two independent molecules in the unit cell, both of which contain a hepta-coordinated Fe(II) and axial NCS ligands. Variable temperature magnetic susceptibility and structural studies are consistent with a high spin Fe(II) complex and show no evidence of any spin crossover behaviour. In contrast, the bis cyanide derivative (V) crystallizes with two independent molecules in the unit cell, both of which have different coordination geometries consistent with different spin states for the two Fe(II) centres. At 250 K, the molecular structure of (V) shows the presence of both 7- and a 6-coordinate Fe(II) complexes in the crystal lattice. As the temperature is lowered, the molecules undergo a structural change and at 100 K the structural data is consistent with a 6- and 5-coordinate Fe(II) complex in the unit cell. Magnetic studies confirm that this complex undergoes a gradual, thermal, spin crossover transition in the solid state. Photomagnetic measurements indicate this is the first chiral Fe (II) sea complex to exhibit a LIESST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(A) In recent years, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores have attracted considerable interest due to their unique photochemical properties. However detailed studies on the stability of BODIPY and analogues under acidic and basic conditions have been lacking. Thus the stability of a series of BODIPY analogues in acidic (di- and trichloroacetic acid) and basic (aqueous ammonium hydroxide) conditions was investigated using 11B NMR spectroscopy. Among the analogues tested, 4,4-diphenyl BODIPY was the most stable under the conditions used in the experiments. It was found that reaction of 4,4-dimethoxy BODIPY with dichloroacetic acid gave mixed anhydride 4,4-bis(dichloroacetoxy) BODIPY in good yields. Treatment of the latter mixed anhydride with alcohols such as methanol and ethanol in the presence of a base afforded corresponding borate esters, whereas treatment with 1,2-diols such as ethylene glycol and catechol in the presence of a base gave corresponding cyclic borate esters. Furthermore treatment of 4,4-difluoro-8-methyl-BODIPY with secondary amines in dihalomethane resulted in carbon–carbon bond formation at the meso-methyl position of BODIPY via Mannich-type reactions. The resulting modified BODIPY fluorophores possess high fluorescent quantum yields. Five BODIPY analogues bearing potential ion-binding moieties were synthesized via this Mannich-type reaction. Among these, the BODIPY bearing an aza-18-crown-5 tether was found to be selective towards copper (II) ion, resulting in a large blue shift in absorption and sharp fluorescent quenching, whereas aza-15-crown-4 analogue was selected towards fluoride ion, leading to effective florescent quenching and blue shift. (B) Peptide nucleic acids (PNA), as mimics of natural nucleic acids, have been widely applied in molecular biology and biotechnology. Currently, the preparation of PNA oligomers is commonly achieved by a coupling reaction between carboxyl and amino groups in the presence of an activator. In this thesis attempts were made towards the synthesis of PNA through the Staudinger ligation reactions between C-terminal diphenylphosphinomethanethiol thioesters and N-terminal α-azido PNA building blocks.