7 resultados para BIOLOGICAL RHYTHMS
em Brock University, Canada
Resumo:
Four groups of rainbow trout, Salmo gairdneri, were acclimated to 2°, 10°, and 18°e, and to a diurnal temperature cycle (100 ± 4°C). To evaluate the influence of cycling temperatures in terms of an immediate as opposed to acclimatory response various ventilatory-cardiovascular rate functions were observed for trout, either acclimated to cycling temperatures or acclimated to constant temperatures and exposed to a diurnal temperature cycle for the first time (10° ± 4°C for trout acclimated to 10°C; 18°+ 4°C for trout acclimated to l8°e). Gill resistance and the cardiac to ventilatory rate ratio were then calculated. Following a post preparatory recovery period of 36 hr, measurements were made over a 48 hour period with the first 24 hours being at constant temperature in the case of statically-acclimated fish followed by 24 hours under cyclic temperature conditions. Trout exhibited marked changes in oxygen consumption (Vo ) with temp- 2 erature both between acclimation groups, and in response to the diurnal temperature cycle. This increase in oxygen uptake appears to have been achieved by adjustment of ventilatory and, to some extent, cardiovascular activity. Trout exhibited significant changes in ventilatory rate (VR), stroke volume (Vsv), and flow (VG) in response to temperature. Marked changes in cardiac rate were also observed. These findings are discussed in relation to their importance in convective oxygen transport via water and blood at the gills and tissues. Trout also exhibited marked changes in pressure waveforms associated with the action of the resp; ratory pumps with temperature. Mean differenti a 1 pressure increased with temperature as did gill resistance and utilization. This data is discussed in relation to its importance in diffusive oxygen transport and the conditions for gas exchange at the gills. With one exception, rainbow trout were able to respond to changes in oxygen demand and availability associated with changes in temperature by means of adjustments in ventilation, and possibly pafusion, and the conditions for gas exchange at the gills. Trout acclimated to 18°C, however, and exposed to high cyclic temperatures, showed signs of the ventilatory and cardiovascular distress problems commonly associated with low circulating levels of oxygen in the blood. It appears these trout were unable to fully meet the oxygen requirements associated with c~ling temperatures above 18°C. These findings were discussed in relation to possible limitations in the cardiovascular-ventilatory response at high temperatures. The response of trout acclimated to cycling temperatures was generally similar to that for trout acclimated to constant temperatures and exposed to cycling temperatures for the first time. This result suggested that both groups of fish may have been acclimated to a similar thermal range, regardless of the acclimation regime employed. Such a phenomenon would allow trout of either acclimation group to respond equally well to the imposed temperature cycle. Rainbow trout showed no evidence of significant diurnal rhythm in any parameters observed at constant temperatures (2°, 10°, and 18° C), and under a 12/12 light-dark photoperiod regime. This was not taken to indicate an absence of circadian rhythms in these trout, but rather a deficiency in the recording methods used in the study.
Resumo:
A study was undertaken' to determine the applicability of gas liquid chromatography to the simultaneous analysis of sugars and sugar phosphates from biological samples. A new method of silylation involving dimethylsulfoxide, hexamethyldisilazane, trimethylchlorosilane and cyclohexane (1:0.2:0.1:1) which rapidly silylated sugars and sugar phosphates was developed. Subsequent chromatography on a 5% SE-52 column gave good resolution of the sugar and sugar phosphate samples. Sugar phosphates decomposed during chromatography and were lost at the 7 x 10-3 ~mole level. Acidic ethanol extraction of yeast samples revealed background contamination from the yeast sample, the culture medium and the silylation reagents which would further limit the level of detection obtainable with the glc for sugars in biological samples to the 3 x 10-4 ~mole level.
Resumo:
Resveratrol, a polyphenol found in red wine, has been reported to have
antithrombotic, antiatherogenic, and anticancer properties both in vitro and III VIVO.
However, possible antidiabetic properties of resveratrol have not been examined. The
objective of this study was to investigate the direct effects of resveratrol on basal and
insulin-stimulated glucose uptake and to elucidate its mechanism of action in skeletal
muscle cells. In addition, the effects of resveratrol on basal and insulin- stimulated amino
acid transport and mitogenesis were also examined.
Fully differentiated L6 rat skeletal muscle cells were incubated with resveratrol
concentrations ranging from 1 to 250 IlM for 15 to 120 min. Maximum stimulation, 201
± 8.90% of untreated control, (p<0.001), of2eH] deoxy- D- glucose (2DG) uptake was
seen with 100 IlM resveratrol after 120 min. Acute, 30 min, exposure of the cells to 100
nM insulin stimulated 2DG uptake to 226 ± 12.52% of untreated control (p<0.001). This
appears to be a specific property of resveratrol that is not shared by structurally similar
antioxidants such as quercetin and rutin, both of which did not have any stimulatory
effect. Resveratrol increased the response of the cells to submaximal insulin
concentrations but did not alter the maximum insulin response. Resveratrol action did not
require insulin and was not blocked by the protein synthesis inhibitor cycloheximide.
L Y294002 and wortmannin, inhibitors of PI3K, abolished both insulin and resveratrolstimulated
glucose uptake while phosphorylation of AktlPKB, ERK1I2, JNK1I2, and p38
MAPK were not increased by resveratrol. Resveratrol did not stimulate GLUT4
transporter translocation in GLUT4cmyc overexpressing cells, in contrast to the
significant translocation observed with insulin. Furthermore, resveratrol- stimulated glucose transport was not blocked by the presence of the protein kinase C (PKC)
inhibitors BIMI and G06983. Despite that, resveratrol- induced glucose transport
required an intact actin network, similar to insulin.
In contrast to the stimulatory effect seen with resveratrol for glucose transport,
e4C]methylaminoisobutyric acid (MeAIB) transport was inhibited. Significant reduction
of MeAIB uptake was seen only with 100uM resveratrol (74.2 ± 6.55% of untreated
control, p<0.05), which appeared to be maximum. In parallel experiments, insulin (100
nM, 30 min) increased MeAIB transport by 147 ± 5.77% (p<0.00l) compared to
untreated control. In addition, resveratrol (100 JlM, 120 min) completely abolished
insulin- stimulated amino acid transport (103 ± 7.35% of untreated control,p>0.05).
Resveratrol also inhibited cell proliferation in L6 myoblasts with maximal
inhibition of eH]thymidine incorporation observed with resveratrol at 50 J.LM after 24
hours (8 ± 1.59% of untreated control, p
Resumo:
Forty-four bacteriophage isolates of Erwinia amy/ovora, the causal agent of fire blight, were collected from sites in and around the Niagara Region of Southern Ontario in the summer of 1998. Phages were isolated only from sites where fire blight was present. Thirty-seven of these phages were isolated from the soil surrounding infected trees, with the remainder isolated from aerial plant tissue samples. A mixture of six E. amy/ovora bacterial host strains was used to enrich field samples in order to avoid the selection bias of a single-host system. Molecular characterization of the phages with a combination of peR and restriction endonuclease digestions showed that six distinct phage types were isolated. Ten phage isolates related to the previously characterized E. amy/ovora phage PEa1 were isolated, with some divergence of molecular markers between phages isolated from different sites. The host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amy/ovora strains, and that some types were able to lyse the epiphytic bacterium Pantoea agg/omerans. Biological control of E. amy/ovora by the bacteriophages was assessed in a bioassay using discs of immature pear fruit. Twenty-three phage isolates were able to significantly suppress the incidence of bacterial exudate on the pear disc surface. Quantification of the bacterial population remaining on the disc surface indicated that population reductions of up to 97% were obtainable by phage treatment, but that elimination of bacteria from the surface was not possible with this model system.
Resumo:
Orosensory perception strongly influences liking and consumption of foods and beverages. This thesis examines the influence of biological sources of individual variation on the perception of prototypical orosensory stimuli, food liking, self-reported alcohol liking and consumption, and indices of health. Two orosensory indices were examined: propylthiouracil (PROP) responsiveness, a genetically-mediated index of individual variation associated with enhanced responsiveness to orosensory stimuli often expressed as PROP taster status (PTS); and thermal taster status (TTS), a recently reported index of orosensory responsiveness. Taster status in PTS and/or TTS confers greater responsiveness to most orosensory stimuli. Gender, age, ethnicity, and fungiform papillae (FP) density were not associated with orosensory responsiveness to tastants, an astringent, and a flavour. Unlike PROP responsiveness, FP density was not associated with TTS. Both PROP responsiveness and TTS were associated with increased responsiveness to orosensory stimuli, including temperature and astringency. For PROP, this association did not hold when stimuli were presented at cold or warm temperatures, which are ecologically valid since most foods and beverages are not consumed at ambient temperature. Thermal tasters (TTs), who perceive 'phantom' taste sensations with lingual thermal stimulation, were more responsive to stimuli at both temperatures than thermal non-tasters (TnTs). While PTS, TIS, and gender affected self-reported liking and consumption of some alcoholic beverages, gender associated with the greatest number of beverage types and consumption parameters, with males generally liking and consuming alcoholic beverages more than females. Age and gender were the best predictors of alcoholic beverageAiking and consumption. As expected, .. liking of bitter and fatty foods and cream was inversely related to PROP responsiveness. TTS did not associate with body mass index or waist circumference, and contrary to previous studies, neither did PROP responsiveness. Taken together, TnTs' greater liking of cooked fruits and vegetables and high alcohol, and astringent alcoholic beverages than TTs suggests differences between TTS groups may be driven by perceived temperature and texture. Neither an interaction between PTS and TTS nor a TTS effect on PROP responsiveness was observed, suggesting these two indices of individual variation exert their influences on orosensory perception independently.
Resumo:
Skeletal muscle (SKM) is the most important tissue in maintaining glucose homeostasis and impairments in this tissue leads to insulin resistance (IR). Activation of 5’ AMP-activated kinase (AMPK) is viewed as a targeted approach to counteract IR. Rosemary extract (RE) has been reported to decrease blood glucose levels but its effects on SKM are not known. We hypothesized that RE acts directly on SKM to increase glucose uptake (GU). We found an increase in GU (184±5.07% of control, p<0.001) in L6 myotubes by RE to levels similar to insulin and metformin. Carnosic acid (CA) and rosmarinic acid (RA), major polyphenols found in RE, increased GU. RE, CA, and RA significantly increased AMPK phosphorylation and their effects on GU was reduced by an AMPK inhibitor. Our study is the first to show a direct effect of RE, CA and RA on SKM GU by a mechanism that involves AMPK activation.
Resumo:
Cancer cells display enhanced growth rates and a resistance to apoptosis. Lung cancer accounts for the most cancer related deaths and non-small cell lung cancer (NSCLC) represents an aggressive form of lung cancer, accounting for almost 80% of all lung cancer cases. The phytochemical rosemary extract (RE) has been reported to have anticancer effects in vitro and in vivo however, limited evidence exists regarding the effects of RE and its polyphenolic constituents carnosic acid (CA) and rosmarinic acid (RA) in lung cancer. The present study shows RE, CA and RA inhibit lung cancer cell proliferation and survival in various NSCLC cell lines and that CA and RA interact synergistically to inhibit cell proliferation. Moreover RE, CA and RA are capable of altering activation and/or expression of Akt, ERK and AMPK, signaling molecules which regulate cell proliferation and survival. RE shows potential as an anticancer agent and should be further investigated.