3 resultados para BETA DECAY
em Brock University, Canada
Resumo:
Maximum production rates ofs and decay kinetics for the hydrated electron, the indolyl neutral radical and the indole triplet state have been obtained in the microsecond, broadband (X > 260 nm) flash photolysis of helium-saturated, neutral aqueous solutions of indole, in the absence and in the presence of the solutes NaBr, BaCl2*2H20 and CdSCV Fluorescence spectra and fluorescence lifetimes have also been obtained in the absence and in the presence of the above solutes, The hydrated electron is produced monophotonically and biphotonically at an apparent maximum rate which is increased by BaCl2*2H20 and decreased by NaBr and CdSOif. The neutral indolyl radical may be produced monophotonically and biphotonically or strictly monophotonically at an apparent maximum rate which is increased by NaBr and CdSO^ and is unaffected by BaCl2*2H20. The indole triplet state is produced monophotonically at a maximum rate which is increased by all solutes. The hydrated electron decays by pseudo first order processes, the neutral indolyl radical decays by second order recombination and the indole triplet state decays by combined first and second order processes. Hydrated electrons are shown to react with H , H2O, indole, Na and Cd"*""1"". No evidence has been found for the reaction of hydrated electrons with Ba . The specific rate of second order neutral indolyl radical recombination is unaffected by NaBr and BaCl2*2H20, and is increased by CdSO^. Specific rates for both first and second order triplet state decay processes are increased by all solutes. While NaBr greatly reduced the fluorescence lifetime and emission band intensity, BaCl2*2H20 and CdSO^ had no effect on these parameters. It is suggested that in solute-free solutions and in those containing BaCl2*2H20 and CdSO^, direct excitation occurs to CTTS states as well as to first excited singlet states. It is further suggested that in solutions containing NaBr, direct excitation to first excited singlet states predominates. This difference serves to explain increased indole triplet state production (by ISC from CTTS states) and unchanged fluorescence lifetimes and emission band intensities in the presence of BaCl2*2H20 and CdSOt^., and increased indole triplet state production (by ISC from S^ states) and decreased fluorescence lifetime and emission band intensity in the presence of NaBr. Evidence is presented for (a) very rapid (tx ^ 1 us) processes involving reactions of the hydrated electron with Na and Cd which compete with the reformation of indole by hydrated electron-indole radical cation recombination, and (b) first and second order indole triplet decay processes involving the conversion of first excited triplet states to vibrationally excited ground singlet states.
Resumo:
Single photon timing was used to study picosecond chlorophyll a fluorescence decay kinetics of pH induced non-photochemical quenching in spinach photosystem 2 particles. The characteristics of this quenching are a decrease in chlorophyll a fluorescence yield as well as a decrease in photochemistry at low pH. Picosecond kinetics of room temperature fluorescence temporally resolve the individual components of the steady state fluorescence yield into components that are related to primary energy conversion processes in photosystem 2. Four components were resolved for dark adapted (Fo), light saturated (Fm), and chemically reduced (Nadithionite) photosystem 2 reaction centres. The fastest and slowest components, indicative of energy transfer to and energy capture by the photosystem 2 reaction centre and uncoupled ("dead") chlorophyll, respectively, were not affected by changing pH from 6.5 to 4.0. The two intermediate components, indicative of electron transfer processes within the reaction centre of photosystem 2, were affected by the pH change. Results indicate that the decrease in the steady state fluorescence yield at low pH was primarily due to the decrease in lifetime and amplitude of the slower of the intermediate components. These results imply that the decrease in steady state fluorescence yield at low pH is not due to changes in energy transfer to and energy capture by the photosystem 2 reaction centre, but is related to changes in charge stabilization and charge recombination in the photosystem 2 reaction centre.
Resumo:
Alternative splicing (AS) is the predominant mechanism responsible for increasing eukaryotic transcriptome and proteome complexity. In this phenomenon, numerous mRNA transcripts are produced from a single pre-mRNA sequence. AS is reported to occur in 95% of human multi-exon genes; one specific gene that undergoes AS is DNA polymerase beta (POLB). POLB is the main DNA repair gene which performs short patch base excision repair (BER). In primate untransformed primary fibroblast cell lines, it was determined that the splice variant (SV) frequency of POLB correlates positively with species lifespan. To date, AS patterns of POLB have only been examined in mammals primarily through the use of cell lines. However, little attention has been devoted to investigating if such a relationship exists in non-mammals and whether cell lines reflect what is observed in vertebrate tissues. This idea was explored through cloning and characterization of 1,214 POLB transcripts from four non-mammalian species (Gallus gallus domesticus, Larus glaucescens, Xenopus laevis, and Pogona vitticeps) and two mammalian species (Sylvilagus floridanus and Homo sapiens) in two tissue types, liver and brain. POLB SV frequency occurred at low frequencies, < 3.2%, in non-mammalian tissues relative to mammalian (>20%). The highest POLB SV frequency was found in H. sapiens liver and brain tissues, occurring at 65.4% and 91.7%, respectively. Tissue specific AS of POLB was observed in L. glaucescens, P. vitticeps, and H. sapiens, but not G. gallus domesticus, X. laevis and S. floridanus.The AS patterns of a second gene, transient receptor potential cation channel subfamily V member 1 (TRPV1), were compared to those of POLB in liver and brain tissues of G. gallus domesticus, X. laevis and H. sapiens. This comparison was performed to investigate if any changes (either increase or decrease) observed in the AS of POLB were gene specific or if they were tissue specific, in which case similar changes in AS would be seen in POLB and TRPV1. Analysis did not reveal an increase or decrease in both the AS of POLB and TRPV1 in either the liver or brain tissues of G. gallus domesticus and H. sapiens. This result suggested that the AS patterns of POLB were not influenced by tissue specific rates of AS. Interestingly, an increase in the AS of both genes was only observed in X. laevis brain tissue. This result suggests that AS in general may be increased in the X. laevis brain as compared to liver tissue. No positive correlation between POLB SV frequency and species lifespan was found in non-mammalian tissues. The AS patterns of POLB in human primary untransformed fibroblast cell lines were representative of those seen in human liver tissue but not in brain tissue. Altogether, the AS patterns of POLB from vertebrate tissues and primate cell lines revealed a positive correlation between POLB SV frequency and lifespan in mammals, but not in non-mammals. It appears that this positive correlation does not exist in vertebrate species as a whole.