4 resultados para BENZYL PHENYL SULFIDE

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis was to study factors related to the development of Brassica juncea as a sustainable nematicide. Brassica juncea is characterized by the glycoside (glucosinolate) sinigrin. Various methods were developed for the determination of sinigrin in Brassica juncea tissue extracts. Sinigrin concentrations in plant tissues at various stages of growth were monitored. Sinigrin enzymatically breaks down into allylisothiocyanate (AITC). AITC is unstable in aqueous solution and degradation was studied in water and in soil. Finally, the toxicity of AITC against the root-lesion nematode (Pratylenchus penetrans) was determined. A method was developed to extract sinigrin from whole Brassica j uncea tissues. The optimal time of extraction wi th boiling phosphate buffer (0.7mM, pH=6.38) and methanol/water (70:30 v/v) solutions were both 25 minutes. Methanol/water extracted 13% greater amount of sinigrin than phosphate buffer solution. Degradation of sinigrin in boiling phosphate buffer solution (0.13%/minute) was similar to the loss of sinigrin during the extraction procedure. The loss of sinigrin from boiling methanol/water was estimated to be O.Ol%/minute. Brassica juncea extract clean up was accomplished by an ion-pair solid phase extraction (SPE) method. The recovery of sinigrin was 92.6% and coextractive impurities were not detected in the cleaned up extract. Several high performance liquid chromatography (HPLC) methods were developed for the determination of sinigrin. All the developed methods employed an isocratic mobile phase system wi th a low concentration of phosphate buffer solution, ammonium acetate solution or an ion-pair reagent solution. A step gradient system was also developed. The method involved preconditioning the analytical column with phosphate buffer solution and then switching the mobile phase to 100% water after sample injection.Sinigrin and benzyl-glucosinolate were both studied by HPLC particle beam negative chemical ionization mass spectrometry (HPLCPB- NCI-MS). Comparison of the mass spectra revealed the presence of fragments arising from the ~hioglucose moiety and glucosinolate side-chain. Variation in the slnlgrin concentration within Brassica juncea plants was studied (Domo and Cutlass cuItivars). The sinigrin concentration in the top three leaves was studied during growth of each cultivar. For Cutlass, the minimum (200~100~g/g) and maximum (1300~200~g/g) concentrations were observed at the third and seventh week after planting, respectively. For Domo, the minimum (190~70~g/g) and maximum (1100~400~g/g) concentrations were observed at the fourth and eighth week after planting, respectively. The highest sinigrin concentration was observed in flower tissues 2050±90~g/g and 2300±100~g/g for Cutlass and Domo cultivars, respectively. Physical properties of AITC were studied. The solubility of AITC in water was determined to be approximately 1290~g/ml at 24°C. An HPLC method was developed for the separation of degradation compounds from aqueous AITC sample solutions. Some of the degradation compounds identified have not been reported in the literature: allyl-thiourea, allyl-thiocyanate and diallyl-sulfide. In water, AITC degradation to' diallyl-thiourea was favored at basic pH (9.07) and degradation to diallyl-sulfide was favored at acidic pH (4 . 97). It wap necessary to amend the aqueous AITC sample solution with acetonitrile ?efore injection into the HPLC system. The acetonitrile amendment considerably improved AITC recovery and the reproducibility of the results. The half-life of aqueous AITC degradation at room temperature did not follow first-order kinetics. Beginning with a 1084~g/ml solution, the half-life was 633 hours. Wi th an ini tial AITC concentration of 335~g/ml the half-life was 865 hours. At 35°C the half-life AITC was 76+4 hours essentially independent of the iiisolution pH over the range of pH=4.97 to 9.07 (1000~g/ml). AITC degradation was also studied in soil at 35°C; after 24 hours approximately 75% of the initial AITC addition was unrecoverable by water extraction. The ECso of aqueous AITC against the root-lesion nematode (Pratylenchus penetrans) was determined to be approximately 20~g/ml at one hour exposure of the nematode to the test solution. The toxicological study was also performed with a myrosinase treated Brassica juncea extract. Myrosinase treatment of the Brassica juncea extract gave nearly quantitative conversion of sinigrin into AITC. The myrosinase treated extract was of the same efficacy as an aqueous AITC solution of equivalent concentration. The work of this thesis was focused upon understanding parameters relevant to the development of Brassica juncea as a sustainable nematicide. The broad range of experiments were undertaken in support of a research priority at Agriculture and Agri-Food Canada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was directed towards the investigation of the Smiles rearrangement in hydrazidic systems and the synthesis of related heterocyclic compounds. The work can be conveniently divided into two main sections. Section 1 of the thesis relates to the synthesis and examination of the O+N migration of phenoxy- derivatives of hydrazidic halides. In general, hydrazidic halides were found to react with 2-nitrophenol and 4-nitrophenol to give corresponding a-nitrophenoxy- compounds. These a-nitrophenoxy- compounds were found to rearrange in warm base to give the corresponding N-benzoyl compounds via a proposed five-membered transition state. Experiments conducted in styrene revealed no radical contribution to the rearrangement. Cross-over product analysis indicated the rearrangement as intramolecular and consistent with the Smiles rearrangement. The preparation of N-a-chlorobenzylidene-N'-2-nitrophenyl- -N'-(2,4-dibromophenyl)hydrazine from N-benzoyl-N'-2-nitrophenyl- N'-(2,4-dibromophenyl)hydrazine was accomplished using phosphorus oxychloride. Examination of this hydrazidic chloride indicated a marked decrease .in reactivity as compared to the N-a-chlorobenzylidene-N'-phenylhydrazine case. Section 2 concerns itself with the preparation of heterocyclic compounds using an analogy of the five-membered transition state present in the Smiles rearrangement of a substituted benzylidene derivatives A new preparation of 2,4-phenyl1,3,4- oxadiazol-S-one using N-benzoyl-N'-phenylhydrazine and ethyl thiochloroformate is reported. Two new preparations of N-a-thiobenzoyl-N'-(2,4-dibromophenylhydrazine are reported using sodium hydrosulfide in conjunction with N-a-bromobenzylidene-N'-(2,4-dibromophenyl)hydrazine in the first, and phosphorus pentasulfide with N-benzoylN'-( 2,4-dibromophenyl)hydrazine in the second. The latter is preferred due to the formation of a sulfide co-product in the former. Two preparations of 2-phenyl-4-(2,4-dibromophenyl)-1,3,4- thiadiazol-S-one are reported using N-thiobenzoyl-N'-(2,4-dibromophenyl) hydrazine and ethyl chloroformate and ethyl thiochloroformate Two rapid and easy preparations of 2-phenyl-4-(2,4-dibromophenyl)- 1,3,4-triazol-S-one are reported using ethyl chloroformate and ethyl thiochloroformate. Sodium cyanate in conjunction with a-aminobenzylidene-N'-(2,4-dibromophenyl)hydrazine also provided 2-phenyl-4-(2,4-dibromophenyl)-1,3,4-triazol-S-one Section 2 concludes with an examination of two possible mechanistic routes to the prepared heterocycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toluene is converted to benzyl alcohol by the fungi Mortierella isabellina and Helminthosporium species; in the latter case, the product is further metabolized. Toluene-a -d 1 , toluene-a,a-d2, and toluene-a,a,a-d 3 have been used with Mortierellaisabellina in a series of experiments to determine both primary and secondary deuterium kinetic isotope effects for the enzymic benzylic hydroxylation reaction. The values obtained, intermolecular primary kH/kD = intramolecular p rim a r y kH r kD = 1. 0 2 + O. 0 5, and sec 0 n dar y k H I kD = 1. 37 .:!. 0.05, suggest a mechanism for the reaction involving benzylic proton removal from a radical intermediate in a non-symmetrical transition state. 2H NMR (30.7 MHz) studies using ethylbenzene-l,1-d 2 , 3 -fluoroethylbenzene-l,1-d 2 , 4 -fluoroethylbenzene-l,1-d 2 , and toluene-dB as substrates with Mortierella isabellina suggest, based on the observable differences in rates of conversion between the substrates, that the hydroxylation of hydrocarbons at the benzylic position proceeds via a one electron abstraction from the aromatic ring, giving a radical cation. A series of 1,3-oxathiolanes (eight) were incubated with Mortierella isabellina , Helminthosporium , Rhizopus arrhizus , and Aspergillus niger . Sulphoxides were obtained from Mortierella isabellina and Rhizopus arrhizus using the substrates 2-phenyl-, 2-methyl-2-phenyl-, and 2-phenyl-2-tert. butyl-l,3-oxathiolane. The relative stereochemistry of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was assigned based on lH decoupling, n.O.e, 1 and H NMR experiments. The lH NMR (200 MHz) of the methylene protons of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was used as a diagnostic standard in assigning the relative stereochemistry of 2-phenyl-l,3-oxathiolan-l-oxide and 2-phenyl-2-tert. butyl-l,3-oxathiolan-l-oxide. The sulphoxides obtained were consistent with an oxidation occurring from the opposite side of the molecule to the phenyl substituent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.