4 resultados para Automated Immunomagnetic Separation
em Brock University, Canada
Resumo:
All-electron partitioning of wave functions into products ^core^vai of core and valence parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of motion of core and valence electrons, and core-valence overlap. These effects are studied with the variational Monte Carlo method using appropriately designed wave functions for the first-row atoms and positive ions. It is shown that the loss of antisymmetry with respect to interchange of core and valence electrons is a dominant effect which increases rapidly through the row, while the effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and valence parts partially substitutes the exclusion principle and is absolutely necessary for meaningful calculations with partitioned wave functions. Core-valence overlap may lead to nonsensical values of the total energy. It has been found that even relatively crude core-valence partitioned wave functions generally can estimate ionization potentials with better accuracy than that of the traditional, non-partitioned ones, provided that they achieve maximum separation (independence) of core and valence shells accompanied by high internal flexibility of ^core and Wvai- Our best core-valence partitioned wave function of that kind estimates the IP's with an accuracy comparable to the most accurate theoretical determinations in the literature.
Resumo:
Several automated reversed-phase HPLC methods have been developed to determine trace concentrations of carbamate pesticides (which are of concern in Ontario environmental samples) in water by utilizing two solid sorbent extraction techniques. One of the methods is known as on-line pre-concentration'. This technique involves passing 100 milliliters of sample water through a 3 cm pre-column, packed with 5 micron ODS sorbent, at flow rates varying from 5-10 mUmin. By the use of a valve apparatus, the HPLC system is then switched to a gradient mobile phase program consisting of acetonitrile and water. The analytes, Propoxur, Carbofuran, Carbaryl, Propham, Captan, Chloropropham, Barban, and Butylate, which are pre-concentrated on the pre-column, are eluted and separated on a 25 cm C-8 analytical column and determined by UV absorption at 220 nm. The total analytical time is 60 minutes, and the pre-column can be used repeatedly for the analysis of as many as thirty samples. The method is highly sensitive as 100 percent of the analytes present in the sample can be injected into the HPLC. No breakthrough of any of the analytes was observed and the minimum detectable concentrations range from 10 to 480 ng/L. The developed method is totally automated for the analysis of one sample. When the above mobile phase is modified with a buffer solution, Aminocarb, Benomyl, and its degradation product, MBC, can also be detected along with the above pesticides with baseline resolution for all of the analytes. The method can also be easily modified to determine Benomyl and MBC both as solute and as particulate matter. By using a commercially available solid phase extraction cartridge, in lieu of a pre-column, for the extraction and concentration of analytes, a completely automated method has been developed with the aid of the Waters Millilab Workstation. Sample water is loaded at 10 mL/min through a cartridge and the concentrated analytes are eluted from the sorbent with acetonitrile. The resulting eluate is blown-down under nitrogen, made up to volume with water, and injected into the HPLC. The total analytical time is 90 minutes. Fifty percent of the analytes present in the sample can be injected into the HPLC, and recoveries for the above eight pesticides ranged from 84 to 93 percent. The minimum detectable concentrations range from 20 to 960 ng/L. The developed method is totally automated for the analysis of up to thirty consecutive samples. The method has proven to be applicable to both purer water samples as well as untreated lake water samples.
Resumo:
We provide an algorithm that automatically derives many provable theorems in the equational theory of allegories. This was accomplished by noticing properties of an existing decision algorithm that could be extended to provide a derivation in addition to a decision certificate. We also suggest improvements and corrections to previous research in order to motivate further work on a complete derivation mechanism. The results presented here are significant for those interested in relational theories, since we essentially have a subtheory where automatic proof-generation is possible. This is also relevant to program verification since relations are well-suited to describe the behaviour of computer programs. It is likely that extensions of the theory of allegories are also decidable and possibly suitable for further expansions of the algorithm presented here.
Resumo:
The sport of ice hockey places multiple simultaneous demands on the physiological, mechanical, and cognitive abilities of individual players. The purpose of the study was to investigate the effect of an eight session degree of separation (DOS) training intervention on sport specific measures of skating, stick handling and puck control movements in competitive ice hockey players. All participants completed a battery of pre and pos t skill and DOS specific tests designed to evaluate DOS abilities: Ttest of agility, a modified Cunningham Faulkner test of anaerobic capacity performed on a skate treadmill and a DOS skate treadmill test. Statistically significant differences were found between groups on the post test scores, meaning that the training intervention had a specific effect on the post test scores of the experimental group (p~O.05). Results of this investigation suggested that a DOS specific training program has the potential to enhance the integration and automation of or sequencing and coordination of uncoordinated ice hockey movements.