3 resultados para Associated production
em Brock University, Canada
Resumo:
This study applies a Marxist theoretical paradigm to examine the working conditions of greenhouse workers in the Niagara Region, and the range of factors that bear upon the formation of their class-consciousness. The Niagara greenhouse industry represents one of the most developed horticultural regions in Canada and plays a prominent role in the local economy. The industry generates substantial revenues and employs a significant number of people, yet the greenhouse workers are paid one of the lowest rates in the region. Being classified as agricultural workers, the greenhouse employees are exempted from many provisions of federal and provincial labour regulations. Under the current provincial statutes, agricultural workers in Ontario are denied the right to organize and bargain collectively. Except for a few technical and managerial positions, the greenhouse industry employs mostly low-skilled workers who are subjected to poor working conditions that stem from the employer's attempts to adapt to larger structural imperatives of the capitalist economy. While subjected to these poor working conditions, the greenhouse workers are also affected by objectively alienated social relations and by ruling class ideological domination and hegemony. These two sets of factors arise from the inherent conflict of interests between wage-labour and capital but also militate against the development of class-consciousness. Semi-structured interviews were conducted with 12 greenhouse workers to examine the role played by their material circumstances in the formulation of their social and political views as well as the extent to which they are aware of their class location and class interests. The hegemonic notions of 'common sense' acted as impediments to formation of classconsciousness. The greenhouse workers have virtually no opportunities to access alternative perspectives that would address the issues associated with exploitation in production and offer solutions leading to 'social justice'. Fonnidable challenges confront any organized political body seeking to improve the conditions of the working people.
Resumo:
GABA (4-aminobutyrate) is synthesized through the decarboxylation of LGlu- (L-Glu-+ H+ ---> GABA + C02), and compared to many free amino acids is present in high concentrations in plant cells. GABA levels rise rapidly and dramatically in response to varied stress conditions including anaerobiosis. Recent papers suggest that GABA production and associated H+ consumption are parts of a metabolic pH-stat mechanism which ameliorates the intracellular pH decline associated with anaerobiosis or other treatments. To test this hypothesis GABA production and efflux have been measured in isolated Asparagus sprengeri cells in response to three treatments which potentially cause intracellular acidification. Acid loads were imposed using 60 min of (i) anaerobiosis, (ii) H+/LGlu- cotransport, and (iii) treatment with permeant weak acids (butyric, acetic and propionic). Both intra- and extracellular GABA concentrations increased more than 100% after anaerobiosis, almost 1000% after H+/L-Glu- cotransport (light or dark) and almost 5000/0 after addition of 5 mM butyric acid at pH 5.0. HPLC analysis of amino acids indicates that as GABA concentrations increased in response to butyric acid addition, glutamate concentrations decreased. Time-course studies demonstrated that added butyric acid stimulates GABA production by 2800/0 within 15 seconds. A fluorescent determination of cytosolic pH indicates that addition of butyric or other weak acids resulted in a rapid reduction in cytosolic pH of 0.6 pH units. The half time for the response to butyric acid addition is 2.1 seconds, indicating that the decline in cytosolic pH is rapid enough to account for the rapid stimulation of GABA production. The acid load in response to butyric acid addition was assayed by measurements of 14C-butyric acid uptake. Calculations indicate that GABA production accounted for 45% of the imposed acid load. The biological significance of GABA efflux is not yet understood. The results support the original hypothesis suggesting a role for GABA production in cellular pH regulation.
Resumo:
Ultrasonic vocalizations (USV) are emitted by rats in a number of social situations such as aggressive encounters, during sexual behavior, and during play in young rats, situations which are predominantly associated with strong emotional responses. These USV typically involve two distinct types of calls: 22 kHz calls, which are emitted in aversive situations and 50 kHz calls, which are emitted in non-aversive, appetitive situation. The 50 kHz calls are the focus of the present study and to date both the glutamatergic and the dopaminergic systems have been independently implicated in the production of these 50 kHz calls. The present study was conducted to examine a possible relationship between glutamate (GLU) and dopamine (DA) in mediating 50 kHz calls. It was hypothesized that the dopaminergic system plays a mediating role in 50 kHz calls induced by injections ofGLU into the anterior hypothalamic/preoptic area (AHPOA) in adult rats. A total of 68 adult male rats were used in this study. Rats' USV were recorded and analyzed in five experiments that were designed to test the hypothesis: in experiment 1, rats were treated with systemic amphetamine (AMPH) alone; in experiment 2, intra- AHPOA GLU was pretreated with systemic AMPH; in experiment 3, intra-AHPOA GLU was pretreated with intra-AHPOA AMPH; in experiment 4, rats were treated with high and low doses of intra-AHPOA AMPH only; in experiment 5, rats were treated with systemic haloperidol (HAL) as a pretreatment for intra-AHPOA GLU. Analysis of the results indicated that AMPH has a facilitatory effect on 50 kHz USV and that a relationship between DA and GLU in inducing 50 kHz calls does exist. The effect, however, was only observed when DA receptors were antagonized with HAL and was not seen with systemic AMPH pretreatments of intra-AHPOA GLU. The DAGLU relationship at the AHPOA was unclear.