3 resultados para Argillaceous turbidite
em Brock University, Canada
Resumo:
The Island Lake greenstone belt is one of the major Archean supracrustal exposures in the northwestern part of the Superior Province of the Canadian Shield. This belt is subdivided into two units: 1) a lower sequence characterised by pillowed to massive, locally pyroclastic, basalt to andesite with a thin central zone of felsic derivatives, all of which are interbedded with and overlain by thick sequences of turbidite facies rock; 2) the upper unit which consists of thick stratified conglomerate overlain by thickly bedded arkose and feldspathic greywacke. Reconnaissance sampling traverses were completed across both the strike of the belt and along its margins with adjacent granitoids. Most of the belt is within the greenschist metamorphic f acies with amphibolite facies occurring in certain areas near t he margins. A post-tectonic, low pressure thermal event may be responsible for the development of a unit of cordierite schi s t which stretches southeastwards from the east end of Cochrane Bay. Volcanism is cyclical in nature changing from tholeiitic to calc-alkaline. There is a general progression in the character of the lavas from mafic t o felsic with stratigraphic height. Chemica l d a ta sugges t that h i gh level fractionation of a mantle- derived ' dry' magma i s t he s ource of the thole i iti c lavas. Contamination of this magma with 'we t' sia l and subsequent fractionation may be r esponsi b l e for the calcalkaline phases .Observations of stratigraphic relationships (in particular the contact between the supracrustals and the granitoids) coupled with the metamorphic and chemical studies, allow the construction of a preliminary model for the evolution of the Island Lake greenstone belt. The following sequential development is suggested: 1) a platform stage characterised by the subaqueous effusion of mafic to intermediate lavas of alternating tholeiitic and calc-alkaline affinities; 2) an edifice stage marked by the eruption of felsic calc-alkaline rocks; 3) an erosional stage characterised by the deposit~on of thick sequences of turbidite facies rocks; 4) the impingement of granitic masses into the margins of the greenstone belt, which was probably related to a downward warping of the supracrustal pilei 5) the erosion of sialic massifs surrounding and within the greenstone belt and of early supracrustal piles, to give the clastic upper unit.
Resumo:
The study area is situated in NE Newfoundland between Gander Lake and the north coast and on the boundary between the Gander and Botwood tectonostratigraphic zones (Williams et al., 1974). The area is underlain by three NE trending units; the Gander Group, the Gander River Ultramafic Belt (the GRUB) and the Davidsville Group. The easternmost Gander Group consists of a thick, psammitic unit composed predominantly of psammitic schist and a thinner, mixed unit of semipelitic and pelitic schist with minor psammite. The mixed unit may stratigraphically overlie the psammitic unit or be a lateral facies equivalent of the latter. No fossils have been recovered from the Gander Group. The GRUB is a terrain of mafic and ultramafic plutonic rocks with minor pillow lava and plagiogranite. It is interpreted to be a dismembered ophiolite in thrust contact with the Gander Group. The westernmost Davidsville Group consists of a basal conglomerate, believed deposited unconformably upon the GRUB from which it was derived, and an upper unit of greywacke and slate, mostly of turbidite origin, with minor limestone and calcareous sandstone. The limestone, which lies near the base of the unit, contains Upper Llanvirn to Lower Llandeilo fossils. The Gander and Davidsville Groups display distinctly different sedimentological , structural and metamorphic histories. The Gander Group consists of quartz-rich, relatively mature sediment. It has suffered three pre-Llanvirn deformations, of which the main deformation, Dp produced a major, NE-N-facing recumbent anticline in the southern part of the study area. Middle greenschist conditions existed from D^ to D- with growth of metamorphic minerals during each dynamic and static phase. In contrast, the mineralogically immature Davidsville Group sediment contains abundant mafic and ultramafic detritus which is absent from the Gander Group. The Davidsville Group displays the effects of a single penetrative deformation with localized D_ and D_ features, all of which can be shown to postdate D_ in the Gander Group. Rotation of the flat Gander S- into a subvertical orientation near the contact with the GRUB and the Davidsville Group is believed to be a Davidsville D^ feature. Regional metamorphism in the Davidsville Group is lower greenschist with a single growth phase, MS . These sedimentological, structural and metamorphic differences between the Gander and Davidsville Groups persist even where the GRUB is absent and the two units are in contact, indicating that the tectonic histories of the Gander and Davidsville Groups are distinctly different. Structural features in the GRUB, locally the result of multiple deformations, may be the result of Gander and/or Davidsville deformations. Metamorphism is in the greenschist facies. Geochemical analyses of the pillow lava suggest that these rocks were formed in a back-arc basin. Mafic intrusives in the Gander Group appear to be the result of magraatism separate from that producing the pillow lava. The Gander Group is interpreted to be a continental rise prism deposited on the eastern margin of the Late Precambrian-Lower Paleozoic lapetus Ocean. The GRUB, oceanic crust possibly formed in a marginal basin to the west, is believed to have been thrust eastward over the Gander Group, deforming the latter, during the pre-Llanvirnian, possibly Precambrian, Ganderian Orogeny. The Middle Ordovician and younger Davidsville Group was derived from, and deposited unconformably on, this deformed terrain. Deformation of the Davidsville Group occurred during the Middle Devonian Acadian Orogeny.
Resumo:
Regional structural analysis of the Timmins area indicates four major periods of tectonic deformation. The DI deformation is characterized by a series of isoclinal FI folds which are outlined in the study area by bedding, pillow tops and variolitic flows. The D2 deformation developed the Porcupine Syncline and refolded the Fl folds about a NE. axis. A pervasive S2 foliation developed during low grade (greenschist) regional metamorphism associated with the D2 deformation. The S2 foliation developed south of the Destor-Porcupine Break. The third phase of tectonic D3 deformation is recognized by the development of a S3 sub-horizontal crenulation cleavage which developed on the plane of the S2 foliation. No meso scopic folds are associated with this deformation. The 8 3 crenulation cleavage is observed south of the Destor-Porcupine Break. The D4 tectonic deformation is recorded as a subvertical S4 crenulation cleavage which developed on the plane of the S2 foliation and also offsets the S3 crenulation cleavage. Macroscopic F4 folds have refolded the F2 axial plane. No metamorphic recrystallization is associated with this deformation. The S4 crenulation cleavage is observed south of the Destor-Porcupine Break. Petrographic evidence indicates that the Timmins area has been subjected to pervasive regional low grade (greenschist) metamorphism which has recrystallized the original mineralogy. South of the study are~ the Donut Lake ultramafic lavas have been subjected to contact medium grade (amphibolite facies) metamorphism associated with the intrusion of the Peterlong Lake Complex. The Archean volcanic rocks of the Timmins area have been subdivided into komatiitic, tholeiitic and calcalkaline suites based on Zr, Ti0 2 and Ni. The three elements were used because of their r e lative immobility during subsequent metamorphic events. Geochemical observations in the Timmins area indicates that the composition of the Goose Lake and Donut Lake Formations are a series of peridotitic, pyroxenitic and basaltic komatiites. The Lower Schumacher Formation is a sequence of basaltic komatiites while the upper part of the Lower Schumacher Formation is an intercalated sequence of basaltic komatiites and low Ti0 2 tholeiites. The variolitic flows are felsic tholeiites in composition and geochemical evidenc e sugg ests that they developed as a n immiscible splitting of a tholeiitic magma. The Upper Schumacher Formation is a sequence of tholeiitic rocks dis p laying a mild iron enrichment. The Krist and Boomerang Formations are the felsic calc-alkaline rocks of the study area which are characteristically pyroclastic. The Redstone Fo rmation is dominantly a calc-alkali ne sequence of volcani c rocks whose minor mafic end me mbers exposed in 1t.he study hav e basaltic komatiitic compositions. Geochemical evidence sugges ts that the Keewatin-type se dimentary rocks have a composition similar to a quartz diorite or a granodiorite. Fi e l d obs ervations and petrographic evidence suggests that they were derived fr om a distal source and now repr esent i n part a turbidite sequence. The Timiskaming-type sedimentary rocks approach the c omp osi t ion of the felsic calc-alkaline rocks of the study area . The basal conglomerate in the study are a sugge s ts that th e uni t was derived fr om a proximal source. Petrographic and ge ochemical evidence suggests that the peridotitic and pyroxenitic komatiites originated as a 35-55% partial melt within the mantle, in excess of 100 Km. depth. The melt ros e as a diapir with the subsequent effusion of the ultramafic lavas, The basaltic komatiites and tholeiitic rocks originated in the mantle from lesser degrees of partial melting and fractionated in low pressure chambers. Geochemical evidence suggests a "genetic link" between the basaltic komatiites and tholeiites, The calc-alkaline rocks developed as a result of the increa.se In PO in the magma chamber. The felsic calcalkaline rocks are a late stage effusion possibly the last major volcanic eruptions in the area.