6 resultados para Antihypertensive Agents
em Brock University, Canada
Resumo:
A new synthetic pathway to analogues of the aglucones of naturally occurring cyclic hydroxamic acids (2,4-dihydroxy-l,4-benzoxazin-3-ones) has been developed. The new pathway involves the coupling of substituted nitrophenols wdth /-propyl-abromo- O-methoxymethylglycolate. These materials were reductively cyclised to reveal the hydroxamic acid functionality. Removal of the C-2 0-methoxymethyl protecting group was achieved chemoselectively using boron trichloride. The analogue 7-methoxy-2,4-dihydroxy-l,4-benzoxazin-3-one (DIMBOA) was assayed with papain and a semilog plot of activity of papain in the presence of excess DIMBOA was found to be linear. A single exponential equation was suggested as the model for kinetic analysis. '^ Nuclear magnetic resonance (NMR) spectra of a couple of hydroxamates were acquired as reference standards for future mechanistic studies of these compounds as thiol protease inhibitors. A 10% '^-labeled sample ofDIMBOA was also prepared for future mechanistic studies using NMR techniques.
Resumo:
The Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a commercially important horticultural flower species and is the only source for several pharmaceutically valuable monoterpenoid indole alkaloids (MIAs), including the powerful antihypertensive ajmalicine and the antineoplastic agents vincristine and vinblastine. While biosynthesis of MIA precursors has been elucidated, conversion of the common MIA precursor strictosidine to MIAs of different families, for example ajmalicine, catharanthine or vindoline, remains uncharacterized. Deglycosylation of strictosidine by the key enzyme Strictosidine beta-glucosidase (SGD) leads to a pool of uncharacterized reaction products that are diverted into the different MIA families, but the downstream reactions are uncharacterized. Screening of 3600 EMS (ethyl methane sulfonate) mutagenized C. roseus plants to identify mutants with altered MIA profiles yielded one plant with high ajmalicine, and low catharanthine and vindoline content. RNA sequencing and comparative bioinformatics of mutant and wildtype plants showed up-regulation of SGD and the transcriptional repressor Zinc finger Catharanthus transcription factor (ZCT1) in the mutant line. The increased SGD activity in mutants seems to yield a larger pool of uncharacterized SGD reaction products that are channeled away from catharanthine and vindoline towards biosynthesis of ajmalicine when compared to the wildtype. Further bioinformatic analyses, and crossings between mutant and wildtype suggest a transcription factor upstream of SGD and ZCT1 to be mutated, leading to up-regulation of Sgd and Zct1. The crossing experiments further show that biosynthesis of the different MIA families is differentially regulated and highly complex. Three new transcription factors were identified by bioinformatics that seem to be involved in the regulation of Zct1 and Sgd expression, leading to the high ajmalicine phenotype. Increased cathenamine reductase activity in the mutant converts the pool of SGD reaction products into ajmalicine and its stereoisomer tetrahydroalstonine. The stereochemistry of ajmalicine and tetrahydroalstonine biosynthesis in vivo and in vitro was further characterized. In addition, a new clade of perakine reductase-like enzymes was identified that reduces the SGD reaction product vallesiachotamine in a stereo-specific manner, characterizing one of the many reactions immediately downstream of SGD that determine the different MIA families. This study establishes that RNA sequencing and comparative bioinformatics, in combination with molecular and biochemical characterization, are valuable tools to determine the genetic basis for mutations that trigger phenotypes, and this approach can also be used for identification of new enzymes and transcription factors.
Resumo:
The preparation and characterization of coordination complexes of Schiff-base and crown ether macrocycles is presented, for application as contrast agents for magnetic resonance imaging, Project 1; and single-molecule magnets (SMMs), Projects 2 and 3. In Project 1, a family of eight Mn(II) and Gd(III) complexes of N3X2 (X = NH, O) and N3O3 Schiff-base macrocycles were synthesized, characterized, and evaluated as potential contrast agents for MRI. In vitro and in vivo (rodent) studies indicate that the studied complexes display efficient contrast behaviour, negligible toxicity, and rapid excretion. In Project 2, DyIII complexes of Schiff-base macrocycles were prepared with a view to developing a new family of mononuclear Ln-SMMs with pseudo-D5h geometries. Each complex displayed slow relaxation of magnetization, with magnetically-derived energy barriers in the range Ueff = 4 – 24 K. In Project 3, coordination complexes of selected later lanthanides with various crown ether ligands were synthesized. Two families of complexes were structurally and magnetically analyzed: ‘axial’ or sandwich-type complexes based on 12-crown-4 and 15-crown-5; and ‘equatorial’ complexes based on 18-crown-6. Magnetic data are supported by ab initio calculations and luminescence measurements. Significantly, the first mononuclear Ln-SMM prepared from a crown ether ligand is described.
Resumo:
Letter with the letterhead “Allan Line of Royal Mail Steamships, Hugh and Andrew Allan, agents, Montreal”. The salutation is “Dear Sir” and it is signed by Andrew Allan. Mr. Allan had enclosed $150 for shooting rights for last season and is asking if there are any rights available for next year, Dec. 16, 1886.
Resumo:
Printed blank from Frank Pearce and Co. Shipping and Insurance Agents regarding the bill of landing for the porcelain cask, Oct. 26, 1876.