4 resultados para Anthraquinone dyes

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this thesis has been divided into seven sections. The first section involves the preparation of N'-acyl-N'-arylN- benzothiohydrazides by the acylation of N'-aryl-N-benzothiohydrazides and is followed by a brief discussion of their possible conformation in solution. The second section deals with the preparation of 1,3,4-thiadiazolium salts by the action of perchloric acid/acetic anhydride on N'-acylN'- aryl-N-benzothiohydrazides and also by the reaction of N'-arylN- benzothiohydrazides with nitriles in an acidic medium. The preparation of 2-methylthio-I,3,4-thiadiazolium methosulfate by methylating the corresponding thione is also described. The third section deals with the reaction of 2-phenyl- and 2-methyl-I,3,4-thiadiazolium salts with alcohols in the presence of base. The stability and spectra of these compounds are discussed. Treatment of the 2-methyl-I,3,4-thiadiazolium salt with base was found to give rise to a dimeric anhydrobase and evidence supporting its structure is given. The anhydrobase could be trapped by a variety of acylating and thioacylating agents before dimerization occurred. In the fourth section, the reaction of N'-acyl-N'-aryl-N-benzothiohydrazides with a variety of acid anhydrides is described. These compounds were found to be identical with those obtained by acylating the anhydrobase. The mass spectral fragmentation of these compounds is described and the anomolous product obtained upon thiobenzoylation of 3-methyl-l-phenyl-pyrazal-5-one is also discussed. The fifth section deals with thioacyl derivatives of the anhydrobase which were prepared by the action of phosphorus pentasulfide upon the oxygen analogues and also obtained as the major product of the reaction of thioacetic acid with compounds related to N'-aryl-N-benzothiohydrazides. The mass spectra and p.m.r. spectra of these compounds are discussed. In the sixth section, the reaction of the 2-methylthio-l,3,4- thiadiazolium salt with active methylene compounds to give acyl and diacyl derivatives of the anhydrobase is described. Some aspects of these compounds are discussed. The seventh section describes the synthesis of ncyanine~' type dyes incorporating the l,3,4-thiadiazole ring and their spectra are briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work in this thesis deals mainly with nucleophilic substitution of chloroanthraquinones as a route to various starting materials which might rearrange, via aryne intermediates to afford fused-ring heterocy1ic carboxylic acids. 1-Amino-5-chloroanthraquinone was successfully prepared by reacting 1,5-dichloroanthraquinone with sodium aZide in ref1uxing dimethylsulfoxide (DMSO). It could also be prepared from the same starting material by reaction with ammonia (gas) in DMSO in the presence of potassium fluoride. Treatment of l-amino-5-chloroanthraquinone with potassium amide in liquid ammonia or with potassium t-butoxide in t-butylbenzene returned mainly starting material, although in the latter case some 1-amino-5-hydroxyanthraquinone was also isolated. 1-Hydroxy-5-chloroanthraquinone was ultimately prepared by diazotization of the amino-analog. It was recovered almost quantitatively after treatmenu'with potassium amide in liquid ammonia. The reaction with potassium t-butoxide in t-buty1benzene was anomalous and gave 1-hydroxyanthraquinone as the only iso1able product. Acridines were successfully prepared by the action of 70% sulfuric acid on 1,5-bis(p-toluidino)-anthraquinone and 1-p-toluidino-5- ch10roanthraquinone, and in the latter case, cleavage to give an acridinecarboxylate was attempted. Substituted anthraquinones reacted with sodium azide in sulfuric acid to give azepindiones by -NH insertion. Methods for separating and identifying isomeric mixtures of these compounds were examined. Attempted decarbonylation of selected azepindiones to give acridones gave mainly what were thought to be amino-benzophenone derivatives. Chloroanthraquinones were found to react with hexamethylphosphoramide (HMPA) to give mixtures of the dimethylamino- and methylaminoderivatives. Under the same conditions halogeno-nitrobenzenes and nitrophenols were substituted to give the appropriate dimethyl aminobenzenes, except in two cases. 3-Chloronitrobenzene reacted anomalously to give a small amount of 3,3'-dichloroazobenzene and a trace of 4-dimethylamino-nitrobenzene. Pentachlorophenol reacted to give a pentachlorophenylphosphorodiamidate in good yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proce-ss ofoxygenic photosynthesis is vital to life on Earth. the central event in photosynthesis is light induced electron transfer that converts light into energy for growth. Ofparticular significance is the membrane bound multisubunit protein known as Photosystem I (PSI). PSI is a reaction centre that is responsible for the transfer of electrons across the membrane to reduce NADP+ to NADPH. The recent publication ofa high resolution X-ray structure of PSI has shown new information about the structure, in particular the electron transfer cofactors, which allows us to study it in more detail. In PSI, the secondary acceptor is crucial for forward electron transfer. In this thesis, the effect of removing the native acceptor phylloquinone and replacing it with a series of structurally related quinones was investigated via transient electron paramagnetic resonance (EPR) experiments. The orientation of non native quinones in the binding site and their ability to function in the electron transfer process was determined. It was found that PSI will readily accept alkyl naphthoquinones and anthraquinone. Q band EPR experiments revealed that the non-native quinones are incorporated into the binding site with the same orientation of the headgroup as in the native system. X band EPR spectra and deuteration experiments indicate that monosubstituted naphthoquinones are bound to the Al site with their side group in the position occupied by the methyl group in native PSI (meta to the hydrogen bonded carbonyl oxygen). X band EPR experiments show that 2, 3- disubstituted methyl naphthoquinones are also incorporated into the Al site in the same orientation as phylloquinone, even with the presence of a halogen- or sulfur-containing side chain in the position normally occupied by the phytyl tail ofphylloquinone. The exception to this is 2-bromo-3-methyl --.- _. -. - -- - - 4 _._ _ _ - _ _ naphthoquinone which has a poorly resolved spectrum, making determination of the orientation difficuh. All of the non-native quinones studied act as efficient electron acceptors. However, forward electron transfer past the quinone could only be demonstrated for anthraquinone, which has a more negative midpoint potential than phylloquinone. In the case of anthraquinone, an increased rate of forward electron transfer compared to native PSI was found. From these results we can conclude that the rate ofelectron transfer from Al to Fx in native PSI lies in the normal region ofthe Marcus Curve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ontario Tender Fruit Marketing Board operates under the Farm Producers Marketing Act. It covers all tender fruit farmers who produce either fresh or canned products. Today the board has over 500 grower-members. Tender fruit in the Niagara region includes: peaches, pears, plums, grapes and cherries. The fruits are used in a number of different ways, from jams and jellies to desserts, sauces and wine. Peaches were first harvested along the Niagara river in 1779. Peter Secord (Laura Secord’s uncle) is thought to be the first farmer to plant fruit trees when he took a land grant near Niagara in the mid 1780s. Since the beginnings of Secord’s farm, peaches, pears and plums have been grown in the Niagara region ever since. However, none of the original varities of peach trees remain today. Peaches were often used for more than eating by early settlers. The leaves and bark of the tree was used to make teas for conditions such as chronic bronchitis, coughs and gastritis. Cherries have been known to have anti-inflammatory and pain relieving properties. Like peaches and cherries, pears had many uses for the early pioneers. The wood was used to make furniture. The juice made excellent ciders and the leaves provided yellow dyes. Plums have been around for centuries, not only in the Niagara region, but throughout the world. They have appeared in pre-historic writings and were present for the first Thanksgiving in 1621. The grape industry in Ontario has also been around for centuries. It began in 1798 when land was granted to Major David Secord (brother-in-law to Laura Secord) slightly east of St. David’s, on what is Highway No. 8 today. Major Secord’s son James was given a part of the land in 1818 and in 1857 passed it onto Porter Adams. Adams is known to be the first person to plant grapes in Ontario1. Tender fruits are best grown in warm temperate climates. The Niagara fruit belt, stretching 65km from Hamilton to Niagara on the Lake, provides the climate necessary for this fruit production. This belt produces 90% of Ontario’s annual tender fruit crop. It is one of the largest fruit producing regions in all of Canada.