9 resultados para Animals Classification
em Brock University, Canada
Resumo:
Research implies that there ~ay be an association between attitudes toward margil1alized human outgroups and non-human animals. Very few studies, however, have specifically tested this relation empirically. The general purpose of the present research was to determine if such a relation exists and if perceptions of human-animal similarity avail as a common predictor of both types of attitudes. Ideological orientations associated with prejudiced attitudes (Social Dominance Orientation, Right-Wing Authoritarianism, and Universal Orientation) were also examined as individual differences in predicting perceptions of human-animal similarity. As predicted, people who endorsed prejudiced attitudes toward human outgroups (Study 1) and immigrants in particular (Studies 2 and 3), were more likely to endorse prejudiced attitudes toward non-human animals. In Study 2, perceptions that humans are superior (versus similar) to other animals directly predicted higher levels of prejudice toward non-human animals, whereas the effect of human superiority beliefs on immigrant prejudice was mediated by dehumanization. In other words, greater perceptions of humans as superior (versus similar) to other animals "allowed for" greater dehumanization of immigrants, which in turn resulted in heightened immigrant prejudice. Furthermore, people higher in Social Dominance Orientation or Right-Wing Authoritarianism were particularly likely to perceive humans as superior (versus similar) to other animals, whereas people characterized by a greater Universal Orientation were more likely to perceive humans and non-human animals as similar. Study 3 examined whether inducing perceptions of human-animal similarity through experimental manipulation would lead to more favourable attitudes toward non-human animals and immigrants. Participants were randomly assigned to read one of four 11 editorials designed to highlight either the similarities or differences between humans and other animals (i.e., animals are similar to humans; humans are similar to animals;~~nimals are inferior to humans; humans are superior to animals) or to a neutral control condition. Encouragingly, when animals were described as similar to humans, prejudice towards non-human animals and immigrants was significantly lower, and to some extent this finding was also true for people naturally high in prejudice (i.e., high in Social Dominance Orientation or Right-Wing Authoritarianism). Inducing perceptions that nonhuman animals are similar to humans was particularly effective at reducing the tendency to dehumanize immigrants ("re-humanization"), lowering feelings of personal threat regarding one's animal-nature, and at increasing inclusive intergroup representations and empathy, all of which uniquely accounted for the significant decreases in prejudiced attitudes. Implications for research, theory and prejudice interventions are considered.
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.
Resumo:
While billions of farmed animals are immobilized within agribusiness, every year some of these animals manage to break free. This thesis examines the stories of those who flee slaughterhouses and the public response to these individuals. My objective is to understand how animals resist and the role that their stories play in disrupting the ways that humans, particularly as consumers, are distanced from the violence of animal enterprises. Included are six vignettes that allow for an in-depth case study of those who have escaped within New York State. Located in the interdisciplinary field of critical animal studies, my inquiry draws upon new animal geographies, transnational feminisms, and critical discourse analysis. This contribution provides discussion of farmed animal resistance in particular and compares experiences and representations of their resistance from both the “view from below,” which is learned through the animals’ caretakers, and a “view from above,” which is gleaned from their representations in corporate-driven mainstream media.
Resumo:
Genetic Programming (GP) is a widely used methodology for solving various computational problems. GP's problem solving ability is usually hindered by its long execution times. In this thesis, GP is applied toward real-time computer vision. In particular, object classification and tracking using a parallel GP system is discussed. First, a study of suitable GP languages for object classification is presented. Two main GP approaches for visual pattern classification, namely the block-classifiers and the pixel-classifiers, were studied. Results showed that the pixel-classifiers generally performed better. Using these results, a suitable language was selected for the real-time implementation. Synthetic video data was used in the experiments. The goal of the experiments was to evolve a unique classifier for each texture pattern that existed in the video. The experiments revealed that the system was capable of correctly tracking the textures in the video. The performance of the system was on-par with real-time requirements.
Resumo:
The box contained the chocolate elephant.
Resumo:
The article discusses improving welfare by reducing fear by studying: Animal Sensory Perception, Animal Behavior Patterns, Animal Habituation and Temperament, Effects of Previous Handling, Training Animals, Training Time and Temperament, Genetic Effects on Handling, Handling of escaped Animals, Facilities, Aggression in Grazing Animals, Inherent Danger of Large Animals, Cattle and Car Accidents.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
An act to consolidate and amend the laws for protection of game and fur-bearing animals in Ontario (1 double-sided page of printed material), 1871.