2 resultados para Analytical models of confinement

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical model for bacterial accumulation in a discrete fractllre has been developed. The transport and accumlllation processes incorporate into the model include advection, dispersion, rate-limited adsorption, rate-limited desorption, irreversible adsorption, attachment, detachment, growth and first order decay botl1 in sorbed and aqueous phases. An analytical solution in Laplace space is derived and nlln1erically inverted. The model is implemented in the code BIOFRAC vvhich is written in Fortran 99. The model is derived for two phases, Phase I, where adsorption-desorption are dominant, and Phase II, where attachment-detachment are dominant. Phase I ends yvhen enollgh bacteria to fully cover the substratllm have accllillulated. The model for Phase I vvas verified by comparing to the Ogata-Banks solution and the model for Phase II was verified by comparing to a nonHomogenous version of the Ogata-Banks solution. After verification, a sensitiv"ity analysis on the inpllt parameters was performed. The sensitivity analysis was condllcted by varying one inpllt parameter vvhile all others were fixed and observing the impact on the shape of the clirve describing bacterial concentration verSllS time. Increasing fracture apertllre allovvs more transport and thus more accllffilliation, "Vvhich diminishes the dllration of Phase I. The larger the bacteria size, the faster the sllbstratum will be covered. Increasing adsorption rate, was observed to increase the dllration of Phase I. Contrary to the aSSllmption ofllniform biofilm thickness, the accllffilliation starts frOll1 the inlet, and the bacterial concentration in aqlleous phase moving towards the olitiet declines, sloyving the accumulation at the outlet. Increasing the desorption rate, redllces the dliration of Phase I, speeding IIp the accllmlilation. It was also observed that Phase II is of longer duration than Phase I. Increasing the attachment rate lengthens the accliffililation period. High rates of detachment speeds up the transport. The grovvth and decay rates have no significant effect on transport, althollgh increases the concentrations in both aqueous and sorbed phases are observed. Irreversible adsorption can stop accllillulation completely if the vallIes are high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If you want to know whether a property is true or not in a specific algebraic structure,you need to test that property on the given structure. This can be done by hand, which can be cumbersome and erroneous. In addition, the time consumed in testing depends on the size of the structure where the property is applied. We present an implementation of a system for finding counterexamples and testing properties of models of first-order theories. This system is supposed to provide a convenient and paperless environment for researchers and students investigating or studying such models and algebraic structures in particular. To implement a first-order theory in the system, a suitable first-order language.( and some axioms are required. The components of a language are given by a collection of variables, a set of predicate symbols, and a set of operation symbols. Variables and operation symbols are used to build terms. Terms, predicate symbols, and the usual logical connectives are used to build formulas. A first-order theory now consists of a language together with a set of closed formulas, i.e. formulas without free occurrences of variables. The set of formulas is also called the axioms of the theory. The system uses several different formats to allow the user to specify languages, to define axioms and theories and to create models. Besides the obvious operations and tests on these structures, we have introduced the notion of a functor between classes of models in order to generate more co~plex models from given ones automatically. As an example, we will use the system to create several lattices structures starting from a model of the theory of pre-orders.