3 resultados para Analyses de trajectoires non-paramétriques
em Brock University, Canada
Resumo:
Body image refers to an individual's internal representation ofhis/her outer self (Cash, 1994; Thompson, Heinberg, Altabe, & Tantleff-Dunn, 1999). It is a multidimensional construct which includes an individual's attitudes towards hislher own physical characteristics (Bane & McAuley, 1998; Cash, 1994; Cash, 2004; Davison & McCabe, 2005; Muth & Cash, 1997; Sabiston, Crocker, & Munroe-Chandler, 2005). Social comparison is the process of thinking about the self in relation to others in order to determine if one's opinions and abilities are adequate and to assess one's social status (Festinger, 1954; Wood, 1996). Research investigating the role of social comparisons on body image has provided some information on the types and nature of the comparisons that are made. The act of making social comparisons may have a negative impact on body image (van den Berg et ai., 2007). Although exercise may improve body image, the impact of social comparisons in exercise settings may be less positive, and there may be differences in the social comparison tendencies between non or infrequent exercisers and exercisers. The present study examined the nature of social comparisons that female collegeaged non or infrequent exercisers and exercisers made with respect to their bodies, and the relationship of these social comparisons to body image attitudes. Specifically, the frequency and direction of comparisons on specific tal-gets and body dimensions were examined in both non or infrequent exercisers and exercisers. Finally, the relationship between body-image attitudes and the frequency and direction with which body-related social comparisons were made for non or infrequent exercisers and exercisers were examined. One hundred and fifty-two participants completed the study (n = 70 non or ill infrequent exercisers; n = 82 exercisers). Participants completed measures of social physique anxiety (SPA), body dissatisfaction, body esteem, body image cognitions, leisure time physical activity, and social comparisons. Results suggested that both groups (non or infrequent exercisers and exercisers) generally made social comparisons and most frequently made comparisons with same-sex friends, and least frequently with same-sex parents. Also, both groups made more appearance-related comparisons than non-appearance-related comparisons. Further, both groups made more negative comparisons with almost all targets. However, non or infrequent exercisers generally made more negative comparisons on all body dimensions, while exercisers made negative comparisons only on weight and body shape dimensions. MANOV As were conducted to examine if any differences on social comparisons between the two groups existed. Results of the MANOVAs indicated that frequency of comparisons with targets, the frequency of comparisons on body dimensions, and direction of comparisons with targets did not differ based on exercise status. However, the direction of comparison of specific body dimensions revealed a significant (F (7, 144) = 3.26,p < .05; 1]2 = .132) difference based on exercise status. Follow-up ANOVAs showed significant differences on five variables: physical attractiveness (F (1, 150) = 6.33,p < .05; 1]2 = .041); fitness (F(l, 150) = 11.89,p < .05; 1]2 = .073); co-ordination (F(I, 150) = 5.61,p < .05; 1]2 = .036); strength (F(I, dO) = 12.83,p < .05; 1]2 = .079); muscle mass or tone (F(l, 150) = 17.34,p < .05; 1]2 = 1.04), with exercisers making more positive comparisons than non or infrequent exercisers. The results from the regression analyses for non or infrequent exercisers showed appearance orientation was a significant predictor of the frequency of social comparisons N (B = .429, SEB = .154, /3 = .312,p < .01). Also, trait body image measures accounted for significant variance in the direction of social comparisons (F(9, 57) = 13.43,p < .001, R2adj = .68). Specifically, SPA (B = -.583, SEB = .186, /3 = -.446,p < .01) and body esteem-weight concerns (B = .522, SEB = .207, /3 = .432,p < .01) were significant predictors of the direction of comparisons. For exercisers, regressions revealed that specific trait measures of body image significantly predicted the frequency of comparisons (F(9, 71) = 8.67,p < .001, R2adj = .463). Specifically, SPA (B = .508, SEB = .147, /3 = .497,p < .01) and appearance orientation (B = .457, SEB = .134, /3 = .335,p < .01) were significant predictors of the frequency of social comparisons. Lastly, for exercisers, the results for the regression of body image measures on the direction of social comparisons were also significant (F(9, 70) = 14.65,p < .001, R2adj = .609) with body dissatisfaction (B = .368, SEB = .143, /3 = .362,p < .05), appearan.ce orientation (B = .256, SEB = .123, /3 = .175,p < .05), and fitness orientation (B = .423, SEB = .194, /3 = .266,p < .05) significant predictors of the direction of social comparison. The results indicated that young women made frequent social comparisons regardless of exercise status. However, exercisers m,a de more positive comparisons on all the body dimensions than non or infrequent exercisers. Also, certain trait body image measures may be good predictors of one's body comp~son tendencies. However, the measures which predict comparison tendencies may be different for non or infrequent exercisers and exercisers. Future research should examine the effects of social comparisons in different populations (i.e., males, the obese, older adults, etc.). Implications for practice and research were discussed.
Resumo:
The CATCH Kids Club (CKC) is an after-school intervention that has attempted to address the growing obesity and physical inactivity concerns publicized in current literature. Using Self-Determination Theory (SDT: Deci & Ryan, 1985) perspective, this study's main research objective was to assess, while controlling for gender and age, i f there were significant differences between the treatment (CKC program participants) and control (non- eKC) groups on their perceptions of need satisfaction, intrinsic motivation and optimal challenge after four months of participation and after eight months of participation. For this study, data were collected from 79 participants with a mean age of9.3, using the Situational Affective State Questionnaire (SASQ: Mandigo et aI., 2008). In order to determine the common factors present in the data, a principal component analysis was conducted. The analysis resulted in an appropriate three-factor solution, with 14 items loading onto the three factors identified as autonomy, competence and intrinsic motivation. Initially, a multiple analysis of co-variance (MANCOY A) was conducted and found no significant differences or effects (p> 0.05). To further assess the differences between groups, six analyses of co-variance (ANeOY As) were conducted, which also found no significant differences (p >0 .025). These findings suggest that the eKC program is able to maintain the se1fdetermined motivational experiences of its participants, and does not thwart need satisfaction or self-determined motivation through its programming. However, the literature suggests that the CKe program and other P A interventions could be further improved by fostering participants' self-determined motivational experiences, which can lead to the persistence of healthy PA behaviours (Kilpatrick, Hebert & Jacobsen, 2002).
Resumo:
Diatoms are renowned for their robust ability to perform NPQ (Non-Photochemical Quenching of chlorophyll fluorescence) as a dissipative response to heightened light stress on photosystem II, plausibly explaining their dominance over other algal groups in turbulent light environs. Their NPQ mechanism has been principally attributed to a xanthophyll cycle involving the lumenal pH regulated reversible de-epoxidation of diadinoxanthin. The principal goal of this dissertation is to reveal the physiological and physical origins and consequences of the NPQ response in diatoms during short-term transitions to excessive irradiation. The investigation involves diatom species from different originating light environs to highlight the diversity of diatom NPQ and to facilitate the detection of core mechanisms common among the diatoms as a group. A chiefly spectroscopic approach was used to investigate NPQ in diatom cells. Prime methodologies include: the real time monitoring of PSII excitation and de-excitation pathways via PAM fluorometry and pigment interconversion via transient absorbance measurements, the collection of cryogenic absorbance spectra to measure pigment energy levels, and the collection of cryogenic fluorescence spectra and room temperature picosecond time resolved fluorescence decay spectra to study excitation energy transfer and dissipation. Chemical inhibitors that target the trans-thylakoid pH gradient, the enzyme responsible for diadinoxanthin de-epoxidation, and photosynthetic electron flow were additionally used to experimentally manipulate the NPQ response. Multifaceted analyses of the NPQ responses from two previously un-photosynthetically characterised species, Nitzschia curvilineata and Navicula sp., were used to identify an excitation pressure relief ‘strategy’ for each species. Three key areas of NPQ were examined: (i) the NPQ activation/deactivation processes, (ii) how NPQ affects the collection, dissipation, and usage of absorbed light energy, and (iii) the interdependence of NPQ and photosynthetic electron flow. It was found that Nitzschia cells regulate excitation pressure via performing a high amplitude, reversible antenna based quenching which is dependent on the de-epoxidation of diadinoxanthin. In Navicula cells excitation pressure could be effectively regulated solely within the PSII reaction centre, whilst antenna based, diadinoxanthin de-epoxidation dependent quenching was implicated to be used as a supplemental, long-lasting source of excitation energy dissipation. These strategies for excitation balance were discussed in the context of resource partitioning under these species’ originating light climates. A more detailed investigation of the NPQ response in Nitzschia was used to develop a comprehensive model describing the mechanism for antenna centred non-photochemical quenching in this species. The experimental evidence was strongly supportive of a mechanism whereby: an acidic lumen triggers the diadinoxanthin de-epoxidation and protonation mediated aggregation of light harvesting complexes leading to the formation of quencher chlorophyll a-chlorophyll a dimers with short-lived excited states; quenching relaxes when a rise in lumen pH triggers the dispersal of light harvesting complex aggregates via deprotonation events and the input of diadinoxanthin. This model may also be applicable for describing antenna based NPQ in other diatom species.