8 resultados para Anaerobic Ammonium Oxidation
em Brock University, Canada
Resumo:
The maximum amount of ethyl carbamate (EC), a known animal carcinogen produced by the reaction of urea and ethanol, allowed in alcoholic beverages is regulated by legislation in many countries. Wine yeast produce urea by the metabolism of arginine, the predominant assimilable amino acid in must. This action is due to arginase (encoded by CARl). Regulation of CARl, and other genes in this pathway, is often attributed to a well-documented phenomenon known as nitrogen catabolite repression. The effect of the timing of di-ammonium phosphate (DAP) additions on the nitrogen utilization, regulation of CARl, and EC production was investigated. A correlation was found between the timing of DAP addition and the utilization of nitrogen. When DAP was added earlier in the fermentations, less amino nitrogen and more ammonia nitrogen was sequestered from the media by the cells. It was also seen that early DAP addition led to more total nitrogen being used, with a maximal difference of ~25% between fermentations where no DAP was added versus addition at the start of the fermentation. The effect of the timing ofDAP addition on the expression of CARJ during fermentation was analyzed via northern transfer and the relative levels of CARl expression were determined. The trends in expression can be correlated to the nitrogen data and be used to partially explain differences in EC formation between the treatments. EC was quantified at the end of fermentation by GC/MS. In Montrachet yeast, a significant positive correlation was found between the timing of DAP addition, from early to late, and the final EC concentration m the wine (r = 0.9226). In one of the fermentations, EC levels of 30.5 ppb was foimd when DAP was added at the onset of fermentation. A twofold increase (69.5 ppb) was observed when DAP was added after 75% of the sugars were metabolized. When no DAP was added, the ethyl carbamate levels are comparable at a value of 38 ppb. In contrast, the timing of DAP additions do not affect the level EC produced by the yeast ECU 18 in this manner. The study of additional yeast strains shows that the effect of DAP addition to fermentations is strain dependent. Our results reveal the potential importance of the timing of DAP addition to grape must with respect to EC production, and the regulatory effect of DAP additions on the expression of genes in the pathway for arginine metabolism in certain wine yeast strains.
Resumo:
The rates of oxidation of three Organic sulphides viz. methyl phenyl sulphide, (P), p -me thoxyphenyl methyl sulphide (M) and methyl p-nitrophenyl sulphide (N). have been obtained in ethanol using MoO-(acac)- as catalyst and Bu OOH as the oxidizing agent. A Hammett plot gave a rho value of -2.1 and the activation energies for the oxidation of P, M and N were estimated to be 63.60, 40.12 and 197.46 Kj mol respectively. The effect of organic sulphide on the oxidation of another sulphide was also ascertained. Positive and negative deviations were observed from the expected slope.
Resumo:
The purpose of the study was to investigate the effect of skate blade radius of hollow (ROH) on anaerobic performance, specifically during the acceleration and stopping phases of an on-ice skating test. Fifteen, male Junior B hockey players (mean age 19 y ± 1.46) were recruited to participate. On-icc testing required each participant to complete an on-ice anaerobic performance test [Reed Repeat Skate (RRS)) on three separate days. During each on-ice test, the participant's skate blades were sharpened to one of three, randomly assigned, ROH values (0.63 cm, 1.27 cm, 1.90 cm). Performance times were recorded during each RRS and used to calculate anaerobic variables [anaerobic power (W), anaerobic capacity (W), and fatigue index (s, %)). Each RRS was video recorded for the purpose of motion analysis. Video footage was imported into Peak Motus™ to measure kinematic variables of the acceleration and stopping phases. The specific variables calculated from the acceleration phase were: average velocity over 6 m (m/s), average stride length (m), and mean stride rate (strides/s). The specific variables calculated from the stopping phase were: velocity at initiation of stopping (rn/s), stopping distance (m), stopping time (s). A repeated measures ANOV A was used to assess differences in mean performance and kinematic variables across the three selected hollows. Further analysis was conducted to assess differences in trial by trial performance and kinematic variables for all hollows. The primary findings of the study suggested that skate blade ROH can have a significant effect on kinematic variables, namely stride length and stride rate during the acceleration phase and stopping distance and stopping time during the stopping phase of an on-ice anaerobic performance test. During the acceleration phase, no significant difdifferences were found in SR and SL across the three selected hollows. Mean SR on the 1.27 cm hollow was significantly slower than both the 0.63 cm and 1.90 cm hollows and SL was significantly longer when skating on the 1.27 cm hollow in comparison to the 1.90 cm hollow. During the stopping phase, stopping distance on the 0.63 cm hollow (4.12 m ± 0.14) was significantly shorter than both the 1.27 cm hollow (4.43 m ± 0.08) (p < 0.05) and the 1.90 cm ho])ow (4.35 m ± 0.12) (p < 0.05). Mean ST was also significantly shorter when stopping on the 0.63 cm hollow then both the 1.27 cm and 1.90 cm hollows. Trial by trial results clearly illustrated the affect of fatigue on kinematic variables; AV, SR, IV decreased from trial 1 to 6. There was no significant effect on anaerobic performance variables during the RRS. Altering the skate blade ROH has a significant and practical affect on accelerating and stopping performance will be discussed in this paper.
A biochemical predictor of performance during mesophilic anaerobic fermentation of starch wastewater
Resumo:
The aim of this study was to determine the potential of biochemical parameters, such as enzyme activity and adenosine triphosphate (ATP) levels, as monitors of process performance in the Upflow Anaerobic Sludge Blanket (UASB) reactor utilizing a starch wastewater. The acid and alkaline phosphatase activity and the ATP content of the UASB sludge were measured in response to changes in flow rate and nutrient loading. Conventional parameters of process performance, such as gas production, acetic acid production, COD, phosphorus, nitrogen and suspended solids loadings and % COD removal were also monitored. The response of both biochemical and conventional parameters to changing process conditions was then compared. Alkaline phosphatase activity exhibited the highest activity over the entire study perioda A high suspended solids loading was observed to upset the system in terms of gas production, acetic acid production and % COD removala The initial rate of increase in alkaline phosphatase activity following an increase in loading was four times as great during process upset than under conditions of good performance. The change in enzyme actiVity was also more sensitive to process upset than changes in acetic acid production. The change in ATP content of the sludge with time suggested that enzyme actiVity was changing independently of the actual viable biomass present. The bacterial composition of the anaerobic sludge granules was similar to that of other sludge bed systems, at the light and scanning electron microscope level. Isolated serum bottle cultures produced several acids involved in anaerobic carbohydrate metabolism. The overall performance of the UASB system indicated that higher loadings of soluble nutrients could have been tolerated by the system.
Resumo:
The work presented in this thesis is divided into three separate sections 4!> Each' 'section is involved wi th a different problem, however all three are involved with a microbial oxidation of a substrate~ A series of 'aryl substituted phenyl a.nd be,nzyl methyl sulphides were oxidized to the corre~pondi~g sulphoxides by 'Mo:rtierellai's'a'b'e'llina NRR.L17'S7 @ For this enzymic Qxidation, based on 180 labeled experiments, the oxygen atom is derived fr'orn the atmosphere and not from water. By way of an u~.traviolet analysis, the rates of oxidation, in terms of sulphox~ de appearance, were obtained and correlated with the Hatnmett p s~grna constants for the phenyl methyl sulphide series. A value of -0.67 was obtained and, is interpreted in terms of a mechanism of oxidation that involves an electrophilic attack on the sulphide sulphur by an enzymic ironoxygen activated complex and the conversion of the resulti!lg sulphur cation to sulphoxide. A series of alkyl phenyl selen~des have been incubated with the fu~gi, Aspergillus niger ATCC9l42, Aspergillus fO'etidus NRRL 337, MIIJisabellina NF.RLl757 and'He'lminth'osparium sp'ecies NRRL 4671 @l These fu?gi have been reported to be capable of carrying out the efficient oxidation of sulphide to sulphoxide, but in no case was there any evidence to supp'ort the occurrence of a microbialox,idation. A more extensive inves·t~gation was carried out with'M,e 'i's'a'b'e'l'l'i'na, this fu~gus was capable of oxidizing the correspondi~g sulphides to sulphoxi.de·s·$ Usi:ng a 1abel.edsubstra.te, [Methyl-l4c]-methyl phenyl selenide, the fate of this compound was invest~gated followi!lg an i'ncubation wi th Me isabellina .. BeSUldes th. e l4C-ana1YS1Q S-,'. a quant"ltta"lve selen'lum ana1Y"S1S was carried out with phenyl methyl selenide. These techniques indicate that thesel'enium was capable of enteri!1g thefu!1gal cell ef'ficiently but that s'ome metabolic cleav~ge of the seleni'um-carbon bond' may take plac'e Ie The l3c NMR shifts were assigned to the synthesized alkyl phenyl sulphides and selenides@ The final section involved the incubation ofethylben~ zene and p-e:rtr.hyltoluene wi th'M ~ 'isab'e'llina NRRL 17574b Followi~ g this incubation an hydroxylated product was isolated from the medium. The lH NMR and mass spectral data identify the products as I-phenylethanol and p-methyl-l-phenylethanol. Employi!lg a ch'iral shift re~gent,tri~ (3-heptafluorobutyl-dcamphorato)'- europium III, the enantiomeric puri ty of these products was invest~gated. An optical rotation measurement of I-phenylethanol was in ~greement with the results obtained with the chiral shift re~gen,te 'M.isabe'l'lina is capable of carryi~g out an hydroxylation of ethylbenzene and p-ethyltoluene at the ~ position.
Resumo:
Modifications to the commercial hydride generator, manufactured by Spectrametrics, resulted in improved operating procedure and enhancement of the arsenic and germanium signals. Experiments with arsenic(III) and arsenic(V) showed that identical reiults could be produced from both oxidation states. However, since arsenic(V) is reduced more slowly than arsenic(III), peak areas and not peak heights must be measured when the arsine is immediately stripped from the system (approximately 5 seconds reaction). When the reduction is allowed to proceed for 20 seconds before the arsine is stripped, peak heights may be used. For a 200 ng/mL solution, the relative standard deviation is 2.8% for As(III) and 3.8% for As(V). The detection limit for arsenic using the modified system is 0.50 ng/mL. Studies performed on As(V) standards show that the interferences from 1000 mg/L of nickel(II), cobalt(II), iron(III), copper(II), cadmium(II), and zinc(II) can be eliminated with the aid of 5 M Hel and 3% L-cystine. Conditions for the reduction of germanium to the corresponding hydride were investigated. The effect of different concentrations of HCl on the reduction of germanium to the covalent hydride in aqueous media by means of NaBH 4 solutions was assessed. Results show that the best response is accomplished at a pH of 1.7. The use of buffer solutions was similarly characterized. In both cases, results showed that the element is best reduced when the final pH of the solution after reaction is almost neutral. In addition, a more sensitive method, which includes the use of (NH4)2S208' has been developed. A 20% increase in the germanium signal is registered when compared to the signal achieved with Hel alone. Moreover, under these conditions, reduction of germanium could be accomplished, even when the solution's pH is neutral. For a 100 ng/mL germanium standard the rsd is 3%. The detection limit for germanium in 0.05 M Hel medium (pH 1.7) is 0.10 ng/mL and 0.09 ng/mL when ammonium persulphate is used in conjunction with Hel. Interferences from 1000 mg/L of iron(III), copper(II), cobalt(II), nickel(II), cadmium(II), lead(II), mercury(II), aluminum(III), tin(IV), arsenic(III), arsenic(V) and zinc(II) were studied and characterized. In this regard, the use of (NH4)ZS20S and Hel at a pH of 1.7 proved to be a successful mixture in the sbppression of the interferences caused by iron, copper, aluminum, tin, lead, and arsenic. The method was applied to the determination of germanium in cherts and iron ores. In addition, experiments with tin(IV) showed that a 15% increase in the tin signal can be accomplished in the presence of 1 mL of (NH4)2S20S 10% (m/V).
Resumo:
Incubations of several polycyclic heteroaromatic compounds and two polycyclic aromatic hydrocarbons with a series of common fungi have been performed. The fungi Cunninghamella elegans ATCC 26269, Rhizopus arrhizus ATCC 11145, and Mortierella isabellina NRRL 1757 were studied in this regard. Of the aza heteroaromatics, only dibenzopyrrole gave a ring hydroxylated product following the incubation with C. elegans. From the thio heteroaromatics studied, dibenzothiophene was metabolized by all the three fungi and thioxanthone by C. elegans and M. isabellina giving sulfones and sulphoxides. Thiochromanone was metabolized stereoselectively to the corresponding sulphoxide by C. elegans. Methyl substituted thioxanthones on incubation with C. elegans produced oxidative products, arising from S -oxidation and hydroxylation at the methyl group. Of the cyclic ketones studied, only fluorenone was reduced to hydroxyfluorene and this metabolism is compared with that reported with cytochrome P-450 monooxygenases of hepatic microsomes. A series of para-substituted ethylbenzenes has been transformed stereoselectively to the 1-phenylethanols by incubation with M. isabellina. Comparisons of the enantiomeric purities obtained from products with their respective para substituent of the same steric size but different electronic properties indicate that the stereoselectivity of hydroxylation at benzylic carbon may be susceptible to electron donating or withdrawing factors in some cases, but that observation is not va lid in all the comparisons. The stereochemistry of the reaction is discussed in terms of three possible steps, ethylbenzene ---) 1-phenylethanol ---) acetophenone ---) 1-phenylethanol. This metabolic pathway could account for the inconsistencies observed in the comparisons of optical purities and electronic character of para substituents. Furthermore, formation of 2-phenylethanol (in some cases), l-(p-acetylphenyl)ethanol from p-diethylbenzene, and N-acetylation of p-ethylaniline was observed. n-Propylbenzene was also converted to optically active 1-phenylpropanol. Acetophenone, p-ethylacetophenone, and o(,~,~-trifluoroacetophenone were transformed to 1-phenylethanol, l-(p-ethylphenyl)ethanol, and 1-phenyl-2,2,2-trifluoroethanol, respectively, with high chemical and excellent optical yields. The 13 C NMR spectra of several substrates and metabolic products have been reported and assigned for the first time.
Resumo:
This research was focussed on the effects of light, solvent and substituents in the molybdenum-catalyzed oxidation of phenylmethyl sulfides with t-Bu02H and on the effect of light in the molybdenum-catalyzed epoxidation of l-octene with t-Bu02H. It was shown that the Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide with t-Bu02H~ at 35°C, proceeds 278 times faster underUV light than under laboratory lighting, whereas the Mo02(acac)2-catalyzed oxidation proceeds only 1.7 times faster under UV light than under normal laboratory lighting. The difference between the activities of both catalysts was explained by the formation of the catalytically active species, Mo(VI). The formation of the Mo(VI) species, from Mo(CO)6 was observed from the IR spectrum of Mo(CO)6 in the carbonyl region. The Mo(CO)6-catalyzed epoxidation of l-octene with t-Bu02H showed that the reaction proceeded 4.6 times faster under UV light than in the dark or under normal laboratory lighting; the rates of epoxidations were found to be the same in the dark and under normal laboratory lighting. The kinetics of the epoxidations of l-octene with t-Bu02H, catalyzed by Mo02(acac)2 were found to be complicated; after fast initial rates, the epoxidation rates decreased with time. The effect of phenylmethyl sulfide on the Mo(CO)6-catalyzed epoxidation of l-octene waS studied. It was shown that instead of phenylmethyl sulfide, phenylmethyl sulfone, which formed rapidly at 85°C, lowered the reaction rate. The epoxidation of l-octene was found to be 2.5 times faster in benzene than in ethanol. The substituent effect on the Mo02(acac)2-catalyzed oxidations of p-OH, p-CHgO, P-CH3' p-H, p-Cl, p-Br, p-CHgCO, p-HCO and P-N02 substituted phenylmethyl sulfides were studied. The oxidations followed second order kinetics for each case; first order dependency on catalyst concentration was also observed in the oxidation of p-CHgOPhSMeand PhSMe. It was found that electron-donating groups on the para position of phenylmethyl sulfide increased the rate of reaction, while electronwithdrawing groups caused the reaction rate to decrease. The reaction constants 0 were determined by using 0, 0- and 0* constants. The rate effects were paralleled by the activation energies for oxidation. The decomposition of t-Bu02H in the presence of M.o (CO)6, Mo02 (acac)2 and VO(acac)2 was studied. The rates of decomposition were found to be very small compared to the oxidation rates at high concentration of catalysis. The relative rates of the Mo02(acac)2-catalyzed oxidation of p-N02PhSMe by t-Bu02H in the presence of either p-CH30PhSMe or PhSMe clearly show that PhSMe and p-CHgOPhSMe act as co-catalysts in the oxidation of p-N02PhSMe. Benzene, mesity1ene and cyclohexane were used to determine the effect of solvent in the Mo02 (acac)2 and Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide. The results showed that in the absence of hydroxylic solvent, a second molecule of t-Bu02H was involved in the transition state. The complexation of the solvent with the catalyst could not be explained.The oxidations of diphenyl sulfoxide catalyzed by VO(acac)2, Mo(CO)6 and Mo02(acac)2 showed that VO(acac)2 catalyzed the oxidation faster than Mo(CO)6 and Mo02 (acac)2_ Moreover, the Mo(CO)6-catalyzed oxidation of diphenyl sulfoxide proceeded under UV light at 35°C.