7 resultados para Anacanthorus penilabiatus n sp

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyanobacterium Synechococcus sp. PCC 7942 (Anacystis nidulans R2) adjusts its photosynthetic function by changing one of the polypeptides of photosystem II. This polypeptide, called Dl, is found in two forms in Synechococcus sp. PCC 7942. Changing the growth light conditions by increasing the light intensity to higher levels results in replacement of the original form of D 1 polypeptide, D 1: 1, with another form, D 1 :2. We investigated the role of these two polypeptides in two mutant strains, R2S2C3 (only Dl:l present) and R2Kl (only Dl:2 present) In cells with either high or low PSI/PSII. R2S2C3 cells had a lower amplitude for 77 K fluorescence emission at 695 nm than R2Kl cells. Picosecond fluorescence decay kinetics showed that R2S2C3 cells had shorter lifetimes than R2Kl cells. The lower yields and shorter lifetimes observed in the D 1 and Dl:2 containing cells. containing cells suggest that the presence of D 1: 1 results in more photochemical or non-photochemical quenching of excitation energy In PSII. One of the most likely mechanisms for the increased quenching in R2S2C3 cells could be an increased efficiency in the transfer of excitation energy from PSII to PSI. However, photophysical studies including 77 K fluorescence measurements and picosecond time resolved decay kinetics comparing low and high PSI/PSII cells did not support the hypothesis that D 1: 1 facilitates the dissipation of excess energy by energy transfer from PSII to PSI. In addition physiological studies of oxygen evolution measurements after photoinhibition treatments showed that the two mutant cells had no difference in their susceptibility to photoinhibition with either high PSI/PSII ratio or low PSI/PSII ratio. Again suggesting that, the energy transfer efficiency from PSII to PSI is likely not a factor in the differences between Dl:l and Dl:2 containing cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are able to regulate the distribution of absorbed light energy between photo systems 1 and 2 in response to light conditions. The mechanism of this regulation (the state transition) was investigated in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Three cell types were used: the wild type, psaL mutant (deletion of a photo system 1 subunit thought to be involved in photo system 1 trimerization) and the apcD mutant (a deletion of a phycobilisome subunit thought to be responsible for energy transfer to photo system 1). Evidence from 77K fluorescence emission spectroscopy, room temperature fluorescence and absorption cross-section measurements were used to determine a model of energy distribution from the phycobilisome and chlorophyll antennas in state 1 and state 2. The data confirm that in state 1 the phycobilisome is primarily attached to PS2. In state 2, a portion of the phycobilisome absorbed light energy is redistributed to photo system 1. This energy is directly transferred to photo system 1 by one of the phycobilisome terminal emitters, the product of the apcD gene, rather than via the photo system 2 chlorophyll antenna by spillover (energy transfer between the photo system 2 and photo system 1 chlorophyll antenna). The data also show that energy absorbed by the photo system 2 chlorophyll antenna is redistributed to photo system 1 in state 2. This could occur in one of two ways; by spillover or in a way analogous to higher plants where a segment of the chlorophyll antenna is dissociated from photo system 2 and becomes part of the photo system 1 antenna. The presence of energy transfer between neighbouring photo system 2 antennae was determined at both the phycobilisome and chlorophyll level, in states 1 and 2. Increases in antenna absorption cross-section with increasing reaction center closure showed that there is energy transfer (connectivity) between photosystem 2 antennas. No significant difference was shown in the amount of connectivity under these four conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phycobilisomes are the major light harvesting complexes for cyanobacteria and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. The phycocyanobilin lyases responsible for chromophorylating the phycocyanin p subunit (CpcB) have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin. 10K absorbance measurements revealed that the energy states of the p phycocyanin chromophores were only subtly shifted; however, 77K steady state fluorescence emission spectroscopy showed excitation energy transfer involving the targeted chromophores to be highly disrupted. Such evidence suggests that phycobilin orientation within the binding domain is specifically modified. We hypothesized that alternate, less specific lyases are able to act on the p binding sites. A phycocyanin linker-polypeptide deficient mutant was similarly characterized. The light state transition, a short term adaptation of the photosynthetic light harvesting apparatus resulting in the redistribution of excitation energy among the photo systems, was shown to be dominated by the reallocation of phycocyanin-absorbed excitation energy. Treatment with a high M phosphate buffer effectively prevented the redistribution of both chlorophyll a- and phycobilisome- absorbed excitation energy, suggesting that the two effects are not strictly independent. The mutant strains required a larger redistribution of excitation energy between light states, perhaps to compensate for their loss in phycobilisome antenna function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of excitation energy between the two photosystems (PSII and PSI) of photosynthesis is regulated by the light state transition. Three models have been proposed for the mechanism of the state transition in phycobilisome (PBS) containing organisms, two involving protein phosphorylation. A procedure for the rapid isolation of thylakoid membranes and PBS fractions from the cyanobacterium Synechococcus m. PCC 6301 in light state 1 and light state 2 was developed. The phosphorylation of thylakoid and soluble proteins rapidly isolated from intact cells in state 1 and state 2 was investigated. 77 K fluorescence emission spectra revealed that rapidly isolated thylakoid membranes retained the excitation energy distribution characteristic of intact cells in state 1 and state 2. Phosphoproteins were identified by gel electrophoresis of both thylakoid membrane and phycobilisome fractions isolated from cells labelled with 32p orthophosphate. The results showed very close phosphoprotein patterns for either thylakoid membrane or PBS fractions in state 1 and state 2. These results do not support proposed models for the state transition which required phosphorylation of PBS or thylakoid membrane proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Photosynthetic state transitions were investigated in the cyanobacterium Synechococcus sp. PCC 7002 in both wild-type cells and mutant cells lacking phycobilisomes. Preillumination in the presence of DCMU (3(3,4 dichlorophenyl) 1,1 dimethyl urea) induced state 1 and dark adaptation induced state 2 in both wild-type and mutant cells as determined by 77K fluorescence emission spectroscopy. Light-induced transitions were observed in the wildtype after preferential excitation of phycocyanin (state 2) or preferential excitation of chlorophyll .a. (state 1). The state 1 and 2 transitions in the wild-type had half-times of approximately 10 seconds. Cytochrome f and P-700 oxidation kinetics could not be correlated with any current state transition model as cells in state 1 showed faster oxidation kinetics regardless of excitation wavelength. Light-induced transitions were also observed in the phycobilisomeless mutant after preferential excitation of short wavelength chlorophyll !l. (state 2) or carotenoids and long wavelength chlorophyll it (state 1). One-dimensional electrophoresis revealed no significant differences in phosphorylation patterns of resolved proteins between wild-type cells in state 1 and state 2. It is concluded that the mechanism of the light state transition in cyanobacteria does not require the presence of the phycobilisome. The results contradict proposed models for the state transition which require an active role for the phycobilisome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil-inhabiting insect-pathogenic fungus Metarhizium robertsii also colonizes plant roots endophytically, thus showing potential as a plant symbiont. M robertsii is not randomly distributed in soils but preferentially associates with the plant rhizosphere when applied in agricultural settings. Root surface and endophytic colonization of switchgrass (Panicum virgatum) and haricot beans (Phaseolus vulgaris) by M robertsii were examined after inoculation with fungal conidia. Light and confocal microscopies were used to ascertain this rhizosphere association. Root lengths, root hair density and emergence of lateral roots were also measured. Initially, M robertsii conidia adhered to, germinated on, and colonized, roots. Furthermore, plant roots treated with Metarhizium grew faster and the density of plant root hairs increased when compared with control plants. The onset of plant root hair proliferation was initiated before germination of M robertsii on the root (within 1-2 days). Plants inoculated with M robertsii AMAD2 (plant adhesin gene) took significantly longer to show root hair proliferation than the wild type. Cell free extracts of M robertsii did not stimulate root hair proliferation. Longer term (60 days) associations showed that M robertsii endophytically colonized individual cortical cells within bean roots. Metarhizium appeared as an amorphous mycelial aggregate within root cortical cells as well as between the intercellular spaces with no apparent damage to the plant. These results suggested that not only is M robertsii rhizosphere competent but displays a beneficial endophytic association with plant roots that results in the proliferation of root hairs. The biocontrol of bean (Phaseolis vulgaris) root rot fungus Fusarium solani f. sp. phaseolis by Metarhizium robertsii was investigated in vitro and in vivo. Dual cultures on Petri dishes showed antagonism of M robertsii against F. solani. A relative inhibition of ca. 60% of F. solani growth was observed in these assays. Cell free culture filtrates of M robertsii inhibited the germination of F. solani conidia by 83% and the inhibitory metabolite was heat stable. Beans plants colonized by M robertsii then exposed to F. solani showed healthier plant profiles and lower disease indices compared to plants not colonized by M robertsii. These results suggested that the insect pathogenic/endophytic fungus M robertsii could also be utilized as a biocontrol agent against certain plant pathogens occurring in the rhizosphere.