2 resultados para Allium Sativum
em Brock University, Canada
Resumo:
Intercropping systems are seen as advantageous as they can provide higher crop yield and diversity along with fewer issues related to pests and weeds than monocultures. However, plant interactions in intercropped crop species and between crops and weeds in these systems are still not well understood. The main objective of this study was to investigate interactions between onion (Allium cepa) and yellow wax bean (Phaseolus vulgaris) in monocultures and intercropping with and without the presence of a weed species, either Chenopodium album or Amaranthus hybridus. Another objective of this study was to compare morphological traits of C. album from two different populations (conventional vs. organic farms). Using a factorial randomized block design, both crop species were planted either in monoculture or intercropped with or without the presence of one of the two weeds. The results showed that intercropping onion with yellow wax bean increased the growth of onion but decreased the growth of yellow wax bean when compared to monocultures. The relative yield total (RYT) value was 1.3. Individual aboveground dry weight of both weed species under intercropping was reduced about 5 times when compared to the control. The poor growth of weeds in intercropping might suggest that crop diversification can help resist weed infestations. A common garden experiment indicated that C. album plants from the conventional farm had larger leaf area and were taller than those from the organic farm. This might be associated with specific evolutionary adaptation of weeds to different farming practices. These findings contribute to the fundamental knowledge of crop-crop interactions, crop-weed competition and adaptation of weeds to various conditions. They provide insights for the management of diversified cropping systems and integrated weed management as practices in sustainable agriculture.
Resumo:
Plutella xylostella (diamondback moth, DBM) is a globally distributed Lepidopteran that feeds and oviposits almost exclusively on plants in the Brassicaceae family. DBM disperses from the southern United States and Mexico into Canada in the spring and summer. Establishment of DBM in Ontario is partially dependent upon the quantity and quality of host plants available and the preference of DBM for different hosts. Host plants include many crops such as broccoli, canola and cabbage, as well as landscape ornamentals and wild plants. It has previously been established that DBM are attracted to host plants by chemicals, specifically glucosinolates. I examined the preference of DBM among crop, wild and ornamental host plant species and how preference varies with insect life stage (3rd and 4th instar larvae and adults). Experiments included exposing DBM larvae from five populations coming from different locations in Canada to six Brassicaceae species and evaluating the preferences and weight gain over one hour. Then adult females were exposed to these same plant species and their oviposition preferences were examined. Populations from Alberta, Saskatchewan and Ontario were compared to assess differences in preference associated with geographic region or species of host plant. The ultimate goal of my study was to understand the potential of various Brassicaceae species to act as reservoirs to sustain and promote population growth of DBM, as well as sinks that may decrease DBM abundance. Results showed that garden cress (Lepidium sativum) was highly preferred over other species (wintercress, black mustard, aubretia, broccoli and ornamental kale) for both food and oviposition sources. Previous studies report that garden cress contains saponins, chemicals shown to be toxic to developing DBM larvae, however no studies have yet shown a preference for garden cress. These results provide information on a novel host plant with the potential to control DBM population growth. No difference in preferences was found among populations of DBM from various sources in Canada.