3 resultados para Allegories.

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide an algorithm that automatically derives many provable theorems in the equational theory of allegories. This was accomplished by noticing properties of an existing decision algorithm that could be extended to provide a derivation in addition to a decision certificate. We also suggest improvements and corrections to previous research in order to motivate further work on a complete derivation mechanism. The results presented here are significant for those interested in relational theories, since we essentially have a subtheory where automatic proof-generation is possible. This is also relevant to program verification since relations are well-suited to describe the behaviour of computer programs. It is likely that extensions of the theory of allegories are also decidable and possibly suitable for further expansions of the algorithm presented here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RelAPS is an interactive system assisting in proving relation-algebraic theorems. The aim of the system is to provide an environment where a user can perform a relation-algebraic proof similar to doing it using pencil and paper. The previous version of RelAPS accepts only Horn-formulas. To extend the system to first order logic, we have defined and implemented a new language based on theory of allegories as well as a new calculus. The language has two different kinds of terms; object terms and relational terms, where object terms are built from object constant symbols and object variables, and relational terms from typed relational constant symbols, typed relational variables, typed operation symbols and the regular operations available in any allegory. The calculus is a mixture of natural deduction and the sequent calculus. It is formulated in a sequent style but with exactly one formula on the right-hand side. We have shown soundness and completeness of this new logic which verifies that the underlying proof system of RelAPS is working correctly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heyting categories, a variant of Dedekind categories, and Arrow categories provide a convenient framework for expressing and reasoning about fuzzy relations and programs based on those methods. In this thesis we present an implementation of Heyting and arrow categories suitable for reasoning and program execution using Coq, an interactive theorem prover based on Higher-Order Logic (HOL) with dependent types. This implementation can be used to specify and develop correct software based on L-fuzzy relations such as fuzzy controllers. We give an overview of lattices, L-fuzzy relations, category theory and dependent type theory before describing our implementation. In addition, we provide examples of program executions based on our framework.