10 resultados para Activity to classroom
em Brock University, Canada
Resumo:
Junior Core French students' motivation to learn a second language and students' French oral communication skills relating to drama instruction were investigated in this study. Students' increased and improved motivation and oral acquisition were measured by several forms of data collection including journals, questionnaires and surveys, interviews, outside observer and teacher observations, and anecdotal comments. The results indicated that as a result of drama integration in the Junior Core French classroom, grade 5 students, both male and female, were more motivated to participate in second language instruction, thereby increasing and improving their oral communication skills. The findings showed that more males than females reported that drama integration allowed them the opportunity to use their French speaking skills. Research shows that interactive approaches to teaching such as drama give students the motivation and enthusiasm to learn.
Resumo:
Objective. Physical activity is important for the health of all human beings. Although it is important to develop good health promotion programs for children to increase participation in physical activity, to date there appear to be no programs based on what kids value beyond health and physical activity itself. This study proposed to create a scale with strong content and face validity that could uncover what any given population of children value in life regardless of their participation in physical activity and that experts feel could be related to physical activity. These findings will allow the development of targeted health promotion programs to increase children's participation in regular physical activity. Method In this study, a combination of qualitative and quantitative approaches was used. Data were gathered from seven experts in the field, sixty-seven children in grades three to five, five parents, and three teachers. From these data response groupings were created and sent to four experts to be given single word names. The resulting nine theme names were re-worked into "child-friendly" language. Four children were then asked to discuss theme names to see if they liked and understood them. The next step involved asking children and experts to rank order the nine themes, the children in general and the experts in terms of relevance to physical activity. From these results, possible versions of the scale were then created using the combined expert/children rankings. Each version was examined for content validity. Two versions of a scale resulted. These were sent to experts, parents, teachers and children in order to determine which one they liked better and to suggest any foreseeable problems. Once this information was collected, a beta (final prototype) version of the scale was created. Results. Nine common theme names were created from the response groupings. All four children agreed that they did understand and like each of the nine theme names. Experts and teachers agreed that full coverage of the content had been achieved. Children suggested a single wording change from "Being Accepted" to "Being Included". Five themes were selected for inclusion. The beta version of the scale included 12 forced choice statements, the first ten comparing all themes against one another followed by two anchor statements. Conclusion. At the outset it was recognized that it is essential to know what children think is important in their lives in order to serve as potential benefits in the development of effective physical activity promotion programs. This study developed a scale which could be used to determine what a population of children feel is important in order to focus health promotion programs for physical activity. The scale has strong face and content validity.
Resumo:
Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .
Resumo:
The neuropeptide Th1RFamide with the sequence Phe-Met-Arg-Phe-amide was originally isolated in the clam Macrocallista nimbosa (price and Greenberg, 1977). Since its discovery, a large family ofFl\1RFamide-related peptides termed FaRPs have been found to be present in all major animal phyla with functions ranging from modulation of neuronal activity to alteration of muscular contractions. However, little is known about the genetics encoding these peptides, especially in invertebrates. As FaRP-encoding genes have yet to be investigated in the invertebrate Malacostracean subphylum, the isolation and characterization ofFaRP-encoding DNA and mRNA was pursued in this project. The immediate aims of this thesis were: (1) to amplify mRNA sequences of Procambarus clarkii using a degenerate oligonucleotide primer deduced from the common amino acid sequence ofisolated Procambarus FaRPS, (2) to determine if these amplification products encode FaRP gene sequences, and (3) to create a selective cDNA library of sequences recognized by the degenerate oligonucleotide primer. The polymerase chain reaction - rapid amplification of cDNA ends (PCR-RACE) is a procedure in which a single gene-specific primer is used in conjunction with a generalized 3' or 5' primer to amplify copies ofthe region between a single point in the transcript and the 3' or 5' end of cDNA of interest (Frohman et aI., 1988). PCRRACE reactions were optimized with respect to primers used, buffer composition, cycle number, nature ofgenetic substrate to be amplified, annealing, extension and denaturation temperatures and times, and use of reamplification procedures. Amplification products were cloned into plasmid vectors and recombinant products were isolated, as were the recombinant plaques formed in the selective cDNA library. Labeled amplification products were hybridized to recombinant bacteriophage to determine ligated amplification product presence. When sequenced, the five isolated PCR-RACE amplification products were determined not to possess FaRP-encoding sequences. The 200bp, 450bp, and 1500bp sequences showed homology to the Caenorhabditis elegans cosmid K09A11, which encodes for cytochrome P450; transfer-RNA; transposase; and tRNA-Tyr, while the 500bp and 750bp sequences showed homology with the complete genome of the Vaccinia virus. Under the employed amplification conditions the degenerate oligonucleotide primer was observed to bind to and to amplify sequences with either 9 or 10bp of 17bp identity. The selective cDNA library was obselVed to be of extremely low titre. When library titre was increased, white. plaques were isolated. Amplification analysis of eight isolated Agt11 sequences from these plaques indicated an absence of an insertion sequence. The degenerate 17 base oligonucleotide primer synthesized from the common amino acid sequence ofisolated Procambarus FaRPs was thus determined to be non-specific in its binding under the conditions required for its use, and to be insufficient for the isolation and identification ofFaRP-encoding sequences. A more specific primer oflonger sequence, lower degeneracy, and higher melting temperature (TJ is recommended for further investigation into the FaRP-encoding genes of Procambarlls clarkii.
Resumo:
Evidence suggests that children with developmental coordination disorder (DCD) have lower levels of cardiorespiratory fitness (CRF) compared to children without the condition. However, these studies were restricted to field-based methods in order to predict V02 peak in the determination of CRF. Such field tests have been criticised for their ability to provide a valid prediction of V02 peak and vulnerability to psychological aspects in children with DCD, such as low perceived adequacy toward physical activity. Moreover, the contribution of physical activity to the variance in V02 peak between the two groups is unknown. The purpose of our study was to determine the mediating role of physical activity and perceived adequacy towards physical activity on V02 peak in children with significant motor impairments. This prospective case-control design involved 122 (age 12-13 years) children with significant motor impairments (n=61) and healthy matched controls (n=61) based on age, gender and school location. Participants had been previously assessed for motor proficiency and classified as a probable DCD (p-DCD) or healthy control using the movement ABC test. V02 peak was measured by a progressive exercise test on a cycle ergometer. Perceived adequacy was measured using a 7 -item subscale from Children's Selfperception of Adequacy and Predilection for Physical Activity scale. Physical activity was monitored for seven days with the Actical® accelerometer. Children with p-DCD had significantly lower V02 peak (48.76±7.2 ml/ffm/min; p:50.05) compared to controls (53.12±8.2 ml/ffm/min), even after correcting for fat free mass. Regression analysis demonstrated that perceived adequacy and physical activity were significant mediators in the relationship between p-DCD and V02 peak. In conclusion, using a stringent laboratory assessment, the results of the current study verify the findings of earlier studies, adding low CRF to the list of health consequences associated with DCD. It seems that when testing for CRF in this population, there is a need to consider the psychological barriers associated with their condition. Moreover, strategies to increase physical activity in children with DCD may result in improvement in their CRF.
Resumo:
The developmental remodelling of motivational systems that underlie drug dependence and addiction may account for the greater frequency and severity of drug abuse in adolescence compared to adulthood. Recent advances in animal models have begun to identify the morphological and the molecular factors that are being remodelled, but little is known about the culmination of these factors in altered sensitivity to psycho stimulant drugs, like amphetamine, in adolescence. Amphetamine induces potent locomotor activating effects in rodents through increased dopamine release in the mesocorticolimbic dopamine system, which makes locomotor activity a useful behavioural marker of age differences in amphetamine sensitivity. The aim of the thesis was to investigate the neural basis for age differences in amphetamine sensitivity with a focus on the nucleus accumbens and the medial prefrontal cortex, which initiate and regulate amphetamine-induced locomotor activity, respectively. In study 1, I found pre- and post- pubertal adolescent rats to be less active (i.e., hypoactive) than adults to a first injection of 0.5, but not of 1.5, mg/kg of intraperitonealy (i.p.) administered amphetamine. Although initially hypoactive, only adolescent rats exhibited an increase in activity to a second injection of amphetamine given 24 h later, indicating that adolescents may be more sensitive to the rapid changes in amphetamineinduced plasticity than adults. Given that the locomotor activating effects of amphetamine are initiated in the nucleus accumbens, age differences in response to direct injections of amphetamine into this brain region were investigated in study 2. In contrast to i.p. injections, adolescents were more active than adults when amphetamine was given directly into the nucleus accumbens, indicating that hypo activity may be attributed to the development of regulatory regions outside of the accumbens. The medial prefrontal cortex (mPFC) is a key regulator of the locomotor activating effects of amphetamine that undergoes extensive remodelling in adolescence. In study 3, I found that an i.p. injection of 1.5, and not of 0.5, mg/kg of amphetamine resulted in a high expression of c-fos, a marker of neural activation, in the pre limbic mPFC only in pre-pubertal adolescent rats. This finding suggests that the ability of adolescent rats to overcome hypo activity at the 1.5 mg/kg dose may involve greater activation of the prelimbic mPFC compared to adulthood. In support of this hypothesis, I found that pharmacological inhibition of prelimbic D 1 dopamine receptors disrupted the locomotor activating effects of the 1.5 mg/kg dose of amphetamine to a greater extent in adolescent than in adult rats. In addition, the stimulation of prelimbic D 1 dopamine receptors potentiated locomotor activity at the 0.5 mg/kg dose of amphetamine only in adolescent rats, indicating that the prelimbic D1 dopamine receptors are involved in overcoming locomotor hypoactivity during adolescence. Given my finding that the locomotor activating effects of amphetamine rely on slightly different mechanisms in adolescence than in adulthood, study 4 was designed to determine whether the lasting consequences of drug use would also differ with age. A short period of pre-treatment with 0.5 mg/kg of amphetamine in adolescence, but not in adulthood, resulted in heightened sensitivity to an injection of amphetamine given 30 days after the start of the procedure, when adolescent rats had reached adulthood. The finding of an age-specific increase in amphetamine sensitivity is consistent with evidence for increased risk for addiction when drug use is initiated in adolescence compared to adulthood in people (Merline et aI., 2002), and with the hypothesis that adolescence is a sensitive period of development.
Resumo:
This project focuses on the bullying found in the 21st century elementary classrooms, more specifically in grades 4-8. These grades were found to have high levels of bullying because of major shifts in a student’s life that may place a student of this age at risk for problems with their peer relationships (Totura et al., 2009). Supporting the findings in the literature review, this handbook was created for Ontario grade 4-8 classroom teachers. The resource educates teachers on current knowledge of classroom bullying, and provides them with information and resources to share with their students so that they can create a culture of upstanders. Upstanders are students who stand up for the victims of bullying, and have the self-esteem and strategies to stand up to classroom bullies. These upstanders, with the support of their classroom teachers and their peers, will be a force strong enough to build the government-mandated Safe School environment.
Resumo:
This project focuses on the bullying found in the 21st century elementary classrooms, more specifically in grades 4-8. These grades were found to have high levels of bullying because of major shifts in a student’s life that may place a student of this age at risk for problems with their peer relationships (Totura et al., 2009). Supporting the findings in the literature review, this handbook was created for an Ontario grade 4-8 classroom teachers. The resource educates teachers on current knowledge of classroom bullying, and provides them with information and resources to share with their students so that they can create a culture of upstanders. Upstanders are students who stand up for the victims of bullying, and have the self-esteem and strategies to stand up to classroom bullies. These upstanders, with the support of their classroom teachers and their peers, will be a force strong enough to build the government-mandated Safe School environment.
Resumo:
Activity of the medial frontal cortex (MFC) has been implicated in attention regulation and performance monitoring. The MFC is thought to generate several event-related potential (ERPs) components, known as medial frontal negativities (MFNs), that are elicited when a behavioural response becomes difficult to control (e.g., following an error or shifting from a frequently executed response). The functional significance of MFNs has traditionally been interpreted in the context of the paradigm used to elicit a specific response, such as errors. In a series of studies, we consider the functional similarity of multiple MFC brain responses by designing novel performance monitoring tasks and exploiting advanced methods for electroencephalography (EEG) signal processing and robust estimation statistics for hypothesis testing. In study 1, we designed a response cueing task and used Independent Component Analysis (ICA) to show that the latent factors describing a MFN to stimuli that cued the potential need to inhibit a response on upcoming trials also accounted for medial frontal brain responses that occurred when individuals made a mistake or inhibited an incorrect response. It was also found that increases in theta occurred to each of these task events, and that the effects were evident at the group level and in single cases. In study 2, we replicated our method of classifying MFC activity to cues in our response task and showed again, using additional tasks, that error commission, response inhibition, and, to a lesser extent, the processing of performance feedback all elicited similar changes across MFNs and theta power. In the final study, we converted our response cueing paradigm into a saccade cueing task in order to examine the oscillatory dynamics of response preparation. We found that, compared to easy pro-saccades, successfully preparing a difficult anti-saccadic response was characterized by an increase in MFC theta and the suppression of posterior alpha power prior to executing the eye movement. These findings align with a large body of literature on performance monitoring and ERPs, and indicate that MFNs, along with their signature in theta power, reflects the general process of controlling attention and adapting behaviour without the need to induce error commission, the inhibition of responses, or the presentation of negative feedback.
Resumo:
The medial prefrontal cortex (mPFC) is involved in performance-monitoring and has been implicated in the generation of several electrocortical responses associated with self-regulation. The error-related negativity (ERN), the inhibitory Nogo N2 (N2), and the feedback-related negativity (FRN) are event-related potential (ERP) components which reflect mPFC activity associated with feedback to behavioural (ERN, N2) and environmental (FRN) consequences. Our main goal was to determine whether or not rnPFC activation varies as a function of motivational context (e.g., those involving performance-related incentives) or the use of internally versus externally generated feedback signals (i.e., errors). Additionally, we assessed medial prefrontal activity in relation to individual differences in personality and temperament. Participants completed a combination of tasks in which performance-related incentives were associated with task performance and feedback generated from internal versus external responses. MPFC activity was indexed using both ERP scalp voltage peaks and intracerebral current source density (CSD) of dorsal and ventral regions. Additionally, participants completed several questionnaires assessing personality and temperament styles. Given previous studies have shown that enhanced mPFC activity to loss (or negative) feedback, we expected that activity in the mPFC would generally be greater during the Loss condition relative to the Win condition for both the ERN and N2. Also, due to the evidence that the (vmPFC) is engaged in arousing contexts, we hypothesized that activity in the ventromedial prefrontal cortex (vmPFC) would be greater than activity in the dorsomedial prefrontal cortex (dmPFC), especially in the Loss condition of the GoNogo task (ERN). Similarly, loss feedback in the BART (FRN) was expected to engage the vmPFC more than the dmPFC. Finally, we predicted that persons rating themselves as more willing to engage in approach-related behaviours or to exhibit rigid cognitive styles would show reduced activity of the mPFC. Overall, our results emphasize the role of affective evaluations of behavioural and environmental consequences when self-regulating. Although there were no effects of context on brain activity, our data indicate that, during the time of the ERN and N2 on the MW Go-Nogo task and the FRN on the BART, the vrnPFC was more active compared to the dmPFC. Moreover, regional recruitment in the mPFC was similar across internally (ERN) and externally (FRN) generated errors signals associated with loss feedback, as reflected by relatively greater activity in the vmPFC than the dmPFC. Our data also suggest that greater activity in the mPFC is associated with better inhibitory control, as reflected by both scalp and CSD measures. Additionally, deactivation of the subgenual anterior cingulate cortex (sgACC) and lower levels of self-reported positive affect were both related to increased voluntary risk-taking on the BART. Finally, persons reporting higher levels of approach-related behaviour or cognitive rigidity showed reduced activity of the mPFC. These results are in line with previous research emphasizing that affect/motivation is central to the processes reflected by mediofrontal negativities (MFNs), that the vmPFC is involved in regulating demands on motivational/affective systems, and that the underlying mechanisms driving these functions vary across both individuals and contexts.