5 resultados para Acting Replication Element
em Brock University, Canada
Resumo:
The Oak Ridges Moraine is a major physiographic feature of south-central Ontario, extending from Rice Lake westward to the Niagara Escarpment. While much previous work has largely postulated a relatively simple the origin of the moraine, recent investigations have concentrated on delineating the discernible glacigenic deposits (or landform architectural elements) which comprise the complex mosaic of the Oak Ridges Moraine. This study investigates the sedimentology of the Bloomington fan complex, one of the oldest elements of the Oak Ridges Moraine. The main sediment body of the Bloomington fan complex was deposited during early stages of the formation of the Oak Ridges Moraine, when the ice subdivided, and formed a confined, interlobate lake basin between the northern and southern lobes. Deposition from several conduits produced a fan complex characterized by multiple, laterally overlapping, fan bodies. It appears that the fans were active sequentially in an eastward direction, until the formation of the Bloomington fan complex was dominated by the largest fan fed by a conduit near the northeastern margin of the deposit. Following deposition of the fan complex, the northern and southern ice margins continued to retreat, opening drainage outlets to the west and causing water levels to drop in the lake basin. Glaciofluvial sediment was deposited at this time, cutting into the underlying fan complex. Re-advancing northern ice then closed westerly outlets, and caused water levels to increase, initiating the re-advance of the southern ice. As the southern ice approached the Bloomington fan, it deposited an ice-marginal sediment complex consisting of glacigenic sediment gravity flows, and glaciolacustrine and glaciofluvial sediments exhibiting north and northwesterly paleocurrents. Continued advance of the southern ice, overriding the fan complex, ii produced large-scale glaciotectonic deformation structures, and deposited the Halton Till. The subaqueous fan depositional model that is postulated for the Bloomington fan complex differs from published models due to the complex facies associations produced by the multiple conduit sources of sediment feeding the fans. The fluctuating northern and southern ice margins, which moved across the study area in opposite directions, controlled the water level in the interlobate basin and caused major changes in depositional environments. The influence of these two lobes also caused deposition from two distinct source directions. Finally, erosion, deposition, and deformation of the deposit with the readvance of the southern ice contributed further to the complexity of the Bloomington fan complex.
Resumo:
15th Congress, 1st session, 1817-1818, House. Doc. 81.
Resumo:
15th Congress, 1st session, 1817-1818, House. Doc. 81. February 20, 1817. Read, and ordered to lie upon the table.
Resumo:
Endonuclease G (EndoG) is a well conserved mitochondrial nuclease with dual lethal and vital roles in the cell. It non-specifically cleaves endogenous DNA following apoptosis induction, but is also active in non-apoptotic cells for mitochondrial DNA (mtDNA) replication and may also be important for replication, repair and recombination of genomic DNA. The aim of our study was to examine whether EndoG exerts similar activities on exogenous DNA substrates such as plasmid DNA (pDNA) and viral DNA vectors, considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus (a cationic liposome transfection reagent), targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. To investigate possible effects of EndoG on viral DNA vectors, we constructed and evaluated AdsiEndoG, a first generation adenovirus (Ad5 ΔE1) vector encoding a shRNA directed against EndoG mRNA, along with appropriate Ad5 ΔE1 controls. Infection of HeLa cells with AdsiEndoG at a multiplicity of infection (MOI) of 10 p.f.u./cell resulted in an early cell proliferation defect, absent from cells infected at equivalent MOI with control Ad5 ΔE1 vectors. Replication of Ad5 ΔE1 DNA was detected for all vectors, but AdsiEndoG DNA accumulated to levels that were 50 fold higher than initially, four days after infection, compared to 14 fold for the next highest control Ad5 ΔE1 vector. Deregulation of the cell cycle by EndoG depletion, which is characterized by an accumulation of cells in the G2/M transition, is the most likely reason for the observed cell proliferation defect. The enhanced replication of AdsiEndoG is consistent with this conclusion, as Ad5 ΔE1 DNA replication is intimately related to cell cycling and prolongation or delay in G2/M greatly enhances this process. Furthermore, infection of HeLa with AdsiEndoG at MOI of 50 p.f.u./cell resulted in an almost complete disappearance of viable, adherent tumour cells from culture, whereas almost a third of the cells were still adherent after infection with control Ad5 ΔE1 vectors, relative to the non-infected control. Therefore, targeting of EndoG by RNAi is a viable strategy for improving the oncolytic properties of first generation adenovirus vectors. In addition, AdsiEndoG-mediated knockdown of EndoG reduced homologous recombination between pDNA substrates in HeLa cells. The effect was modest but, nevertheless demonstrated that the proposed role of EndoG in homologous recombination of cellular DNA also extends to exogenous DNA substrates.
Resumo:
Letter to S.D. Woodruff from J. Amsden, acting collector, Dunnville. He explains that they have never had any “up” freight at that office and therefore he omitted the “up” column altogether, Jan. 24, 1862.