3 resultados para Acclimation temperature

em Brock University, Canada


Relevância:

70.00% 70.00%

Publicador:

Resumo:

:ofiedian lethal temperatures ( LT50' s ) were determined for rainbow trout, Salmo gairdnerii, acclimated for a minimum of 21 days at 5 c onstant temperatures between 4 and 20 0 C. and 2 diel temperature fluctuations ( sinewave curves of amplitudes ± 4 and ± 7 0 C. about a mean temperature of 12 0 C. ) . Twenty-four-, 48-, and 96-hour LT50 estimates were c alculated f ollowing standard flow-through aquatic bioassay techniques and probi t transformation of mortality data. The phenomenon of delayed thermal mortality was also investigated. Shifts in upper incipient lethal temperature occurred as a result of previous thermal conditioning. It was shown that increases in constant acclimation temperature result in proportional l inear increases in thermal tolerances. The increase i n estimated 96-hour LT50's was approximately 0.13 0 c. X 1 0 C:1 between 8 and 20 0 C. The effect of acclimation to both cyclic temperature regimes was an increase in LT50 to values between the mean and maximum constant equivalent daily temperatures of the cycles. Twenty-four-, 48-, and 96-hour LT50 estimates of both cycles corresponded approximately to the LT50 values of the 16 0 C. c onstant temperature equivalent . This increase i n thermal tolerance was further demonstrated by the delayed thermal mortality experiments . Cycle amplitudes appeared to i nfluence thermal resistance through alterations in initi al mortality since mortality patterns characteristic of base temperature acclimations re-appeared after approximately 68 hours exposure to test temperatures for the 12 + 4 0 C. group, whereas mortality patterns stabilized and remained constant for a period greater than 192 hours with the larger therma l cycle ( 12 + 7 0 C. ). NO s ignificant corre lations between s pecimen weight and time-to-death was apparent. Data are discussed in relation to the establishment of thermal criteria for important commercial and sport fishes , such as the salmonids , as is the question whether previously reported values on lethal temperature s may have been under estimated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two groups of rainbow trout were acclimated to 20 , 100 , and 18 o C. Plasma sodium, potassium, and chloride levels were determined for both. One group was employed in the estimation of branchial and renal (Na+-K+)-stimulated, (HC0 3-)-stimulated, and CMg++)-dependent ATPase activities, while the other was used in the measurement of carbonic anhydrase activity in the blood, gill and kidney. Assays were conducted using two incubation temperature schemes. One provided for incubation of all preparations at a common temperature of 2S oC, a value equivalent to the upper incipient lethal level for this species. In the other procedure the preparations were incubated at the appropriate acclimation temperature of the sampled fish. Trout were able to maintain plasma sodium and chloride levels essentially constant over the temperature range employed. The different incubation temperature protocols produced different levels of activity, and, in some cases, contrary trends with respect to acclimation temperature. This information was discussed in relation to previous work on gill and kidney. The standing-gradient flow hypothesis was discussed with reference to the structure of the chloride cell, known thermallyinduced changes in ion uptake, and the enzyme activities obtained in this study. Modifications of the model of gill lon uptake suggested by Maetz (1971) were proposed; high and low temperature models resulting. In short, ion transport at the gill at low temperatures appears to involve sodium and chloride 2 uptake by heteroionic exchange mechanisms working in association w.lth ca.rbonlc anhydrase. G.l ll ( Na + -K + ) -ATPase and erythrocyte carbonic anhydrase seem to provide the supplemental uptake required at higher temperatures. It appears that the kidney is prominent in ion transport at low temperatures while the gill is more important at high temperatures. 3 Linear regression analyses involving weight, plasma ion levels, and enzyme activities indicated several trends, the most significant being the interrelationship observed between plasma sodium and chloride. This, and other data obtained in the study was considered in light of the theory that a link exists between plasma sodium and chloride regulatory mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of a diurnal sine-wave temperature cycle (250 +- 5° C) on the wa terI-e etc r o1 yt est a t us 0 f gol df1' Sh , Carassius auratus, was assessed through determination of Na+, K+, Mg2+, Ca2+, Cl- and water content in plasma, Red blood cells and muscle tissue. Animals were also acclimated to o 0 0 static temperatures (20 C, 25 c, 30 C) corresponding to the high, low and mid-ooint temperatures of the cycle. All groups were sampled at 03:00, 09:00, 15:00 and 21:00 hr. Hemoglobin content and packed cell volume, as well as electrolyte and 'water levels were determined for each animal and red cell ion concentrations and ion : hemoglobin ratios estimated. Cycled animals were distinct from those at constant temperatures in several respects. Hematological parameters were elevated above those of animals at constant temperature and were, on a diurnal basis, more stable. Red blood cell electrolyte levels varied in an adaptively appropriate fashion to cycle temperatures. This was not the case in the constant temperature groups_ Under the cycling regime, plasma ion levels were more diurnally stable than those of constant temperature fish. Although muscle parameters in cycled fish exhibited more fluctuation than was observed in plasma, these also tended to be relatively more stable than was the caseErythrocytic data are discussed in terms of their effects on hemoglobin-oxygen affinity while plasma and muscle observations were considered from the standpoint of overall water-electrolyte balance. In general, cycled fish appeared to be capable of stabilizing overall body fluid composition, while simultaneously effecting adaptively-appropriate modifications in the erythrocytic ionic microenvironment of hemoglobin. The sometimes marked diurnal variability of water-electrolyte status in animals held at constant temperature as opposed to the conservation of cycled fish suggests that this species is, in some fashion, programmed for regulation in a thermally-fluctuating environment. If this interpretation is valid and a phenomenon of general occurrence, some earlier studies involving constant acclimation of eurythermal species normally occupying habitats which vary in temperature on a daily basis may require reconsideration. at constant temperature.