2 resultados para ASSEMBLY FACTOR ASF1

em Brock University, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hepatocellular Carcinoma (HCC) is a major healthcare problem, representing the third most common cause of cancer-related mortality worldwide. Chronic infections with Hepatitis B virus (HBV) and/or Hepatitis C virus (HCV) are the major risk factors for the development of HCC. The incidence of HBV -associated HCC is in decline as a result of an effective HBV vaccine; however, since an equally effective HCV vaccine has not yet been developed, there are 130 million HCV infected patients worldwide who are at a high-risk for developing HCC. Because reliable parameters and/or tools for the early detection of HCC among high-risk individuals are severely lacking, HCC patients are always diagnosed at a late stage where surgical solutions or effective treatment are not possible. Using urine as a non-invasive sample source, two different approaches (proteomic-based and genomic-based approaches) were pursued with the common goal of discovering potential biomarker candidates for the early detection of HCC among high-risk chronic HCV infected patients. Urine was collected from 106 HCV infected Egyptian patients, 32 of whom had already developed HCC and 74 patients who were diagnosed as HCC-free at the time of initial sample collection. In addition to these patients, urine samples were also collected from 12 healthy control individuals. Total urinary proteins, Trans-renal nucleic acid (Tr-NA) and microRNA (miRNA) were isolated from urine using novel methodologies and silicon carbide-loaded spin columns. In the first, "proteomic-based", approach, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to identify potential candidates from pooled urine samples. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR (qRT-PCR). This approach revealed that significant over-expression of three proteins: DJ-1, Chromatin Assembly Factor-1 (CAF-1) and 11 Moemen Abdalla HCC Biomarkers Heat Shock Protein 60 (HSP60), were characteristic events among HCC-post HCV infected patients. As a single-based HCC biomarker, CAF-1 over-expression identified HCC among HCV infected patients with a specificity of 90%, sensitivity of 66% and with an overall diagnostic accuracy of 78%. Moreover, the CAF-lIHSP60 tandem identified HCC among HCV infected patients with a specificity of 92%, sensitivity of 61 % and with an overall diagnostic accuracy of 77%. In the second genomic-based approach, two different approaches were processed. The first approach was the miRNA-based approach. The expression levels of miRNAs isolated from urine were studied using the Illumina MicroRNA Expression Profiling Assay. This was followed by qRT-PCR-based validation of deregulated expression of identified miRNA candidates among all the patients. This approach shed the light on the deregulated expression of a number of miRNAs, which may have a role in either the development of HCC among HCV infected patients (i.e. miR-640, miR-765, miR-200a, miR-521 and miR-520) or may allow for a better understanding of the viral-host interaction (miR-152, miR-486, miR-219, miR452, miR-425, miR-154 and miR-31). Moreover, the deregulated expression of both miR-618 and miR-650 appeared to be a common event among HCC-post HCV infected patients. The results of the search for putative targets of these two miRNA suggested that miR-618 may be a potent oncogene, as it targets the tumor-suppressor gene Low density lipoprotein-related protein 12 (LPR12), while miR-650 may be a potent tumor-suppressor gene, as it is supposed to downregulate the TNF receptor-associated factor-4 (TRAF4) oncogene. The specificity of miR-618 and miR-650 deregulated expression patterns for the early detection of HCC among HCV infected patients was 68% and 58%, respectively, whereas the sensitivity was 64% and 72%, respectively. When the deregulated expression of both miRNAs was combined as a tandem biomarker, the specificity and the sensitivity were 75% and 58% respectively. 111 Moemen Abdalla HCC Biomarkers In the second, "Trans-renal nucleic acid-based", approach, the urinary apoptotic nucleic acid (uaNA) levels of 70ng/mL or more were found to be a good predictor of HCC among chronic HCV infected patients. The specificity and the sensitivity of this diagnostic approach were 76% and 86%, respectively, with an overall diagnostic value of 81 %. The uaNA levels positively correlated to HCC disease progression as monitored by epigenetic changes of a panel of eight tumor-suppressor genes (TSGs) using methylation-sensitive PCR. Moreover, the pairing of high uaNA levels (:::: 70 ng/mL) and CAF-1 over-expreSSIOn produced a highly specific (l 00%) multiple-based HCC biomarker with an acceptable sensitivity of 64%, and with a diagnostic accuracy of 82%. In comparison to the previous pairing, the uaNA levels (:::: 70 ng/mL) in tandem with HSP60 over-expression was less specific (89%) but highly sensitive (72%), resulting in a diagnostic accuracy of 64%. The specificities of miR-650 deregulated expression in combination with either high uaNA content or HSP 60 over-expression were 82% and 79%, respectively, whereas, the sensitivities of these combinations were 64% and 58%, respectively. The potential biomarkers identified in this study compare favorably with the diagnostic accuracy of the a-fetoprotein levels test, which has a specificity of 75%, sensitivity of 68% and an overall diagnostic accuracy of 70%. Here we present an intriguing study which shows the significance of using urine as a noninvasive sample source for the identification of promising HCC biomarkers. We have also introduced new techniques for the isolation of different urinary macromolecules, especially miRNA, from urine. Furthermore, we strongly recommend the potential biomarkers indentified in this study as focal points of any future research on HCC diagnosis. A larger testing pool will determine if their use is practical for mass population screening. This explorative study identified potential targets that merit further investigation for the development of diagnostically accurate biomarkers isolated from 1-2 mL urine samples that were acquired in a non-invasive manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During infection, the model plant Arabidopsis thaliana is capable of activating long lasting defence responses both in tissue directly affected by the pathogen and in more distal tissue. Systemic acquired resistance (SAR) is a type of systemic defence response deployed against biotrophic pathogens resulting in altered plant gene expression and production of antimicrobial compounds. One such gene involved in plant defence is called pathogenesis-related 1 (PR1) and is under the control of several protein regulators. TGA II-clade transcription factors (namely TGA2) repress PR1 activity prior to infection by forming large oligomeric complexes effectively blocking gene transcription. After pathogen detection, these complexes are dispersed by a mechanism unknown until now and free TGA molecules interact with the non-expressor of pathogenesis-related gene 1 (NPR1) protein forming an activating complex enabling PR1 transcription. This study elucidates the TGA2 dissociation mechanism by introducing protein kinase CK2 into this process. This enzyme efficiently phosphorylates TGA2 resulting in two crucial events. Firstly, the DNA-binding ability of this transcription factor is completely abolished explaining how the large TGA2 complexes are quickly evicted from the PR1 promoter. Secondly, a portion of TGA2 molecules dissociate from the complexes after phosphorylation which likely makes them available for the formation of the TGA2-NPR1 activating complex. We also show that phosphorylation of a multiserine motif found within TGA2’s N terminus is responsible for the change of affinity to DNA, while modification of a single threonine in the leucine zipper domain seems to be responsible for deoligomerization. Despite the substantial changes caused by phosphorylation, TGA2 is still capable of interacting with NPR1 and these proteins together form a complex on DNA promoting PR1 transcription. Therefore, we propose a change in the current model of how PR1 is regulated by adding CK2 which targets TGA2 displacing it’s complexes from the promoter and providing solitary TGA2 molecules for assembly of the activating complex. Amino acid sequences of regions targeted by CK2 in Arabidopsis TGA2 are similar to those found in TGA2 homologs in rice and tobacco. Therefore, the molecular mechanism that we have identified may be conserved among various plants, including important crop species, adding to the significance of our findings.