3 resultados para ADIPOSITY
em Brock University, Canada
Resumo:
ABSTRACT Background: Previous studies have implied that weight-bearing, intense and prolonged physical activities optimize bone accretion during the grow^ing years. The majority of past inquiries have used dual-energy X-ray absorptiometry (DXA) to examine bone strength and hand-wrist radiography to determine skeletal maturity in children. Recently, quantitative ultrasound (QUS) technologies have been developed to examine bone properties and skeletal maturity in a safe, noninvasive and cost-effective manner. Objective: The purpose of this study was to compare bone properties and skeletal maturity in competitive male child and adolescent athletes with minimallyactive, age-matched controls, using QUS technology. >. Methods: In total, 224 males were included in the study. The 115 pre-pubertal boys aged 10-12 years consisted of control, minimally-active children (n=34), soccer players (n=26), gymnasts (n=25) and hockey players (n=30). In addition, the 109 late-pubertal boys aged 14-16 years consisted of control, minimally-active adolescents (n=31), soccer players (n=30), gymnasts (n=17) and hockey players (n=31). The athletic groups were elite level players that predominantly trained year-round. Physical activity, nutrition and sports participation were assessed with various questionnaires. Anthropometries, such as height, weight and relative body fat percentage (BF%) were assessed using standard measures. Skeletal strength and age were evaluated using bone QUS. Lastly, salivary testosterone (sT) concentration was measured using Radioimmunoassay (RIA). Results: Within each age group, there were no significant differences between the activity groups in age and pubertal stage. An age effect was apparent in all variables, as expected. A sport effect was noted in all physical characteristics: the child and adolescent gymnasts were shorter and lighter than other sports groups. Adiposity was greater in the controls and in the hockey players. All child subjects were pubertal stage (fanner) I or II, while adolescent subjects were pubertal stage IV or V. There were no differences in daily energy and mineral intakes between sports groups. In both age groups, gymnasts had a higher training volume than other athletic groups. Bone speed of sound (50s) was higher in adolescents compared with the children. Gymnasts had signifieantly higher radial 50S than controls, hockey and soccer players in both age cohorts. Hockey athletes also had higher radial 50S than controls and soccer players in the child and adolescent groups, respectiyely. Child gymnasts and soccer players had greater tibial 50S compared with the hockey players and control groups. Likewise, adolescent gymnasts and soccer players had higher tibial SoS compared with the control group. No interaction was apparent between age and type of activity in any of the bone measures. » Lastly, maturity as assessed by sT and secondary sex characteristics (Tanner stage) was not different between sports group within each age group. Despite the similarity in chronological age, androgen levels and sexual maturity, differences between activity groups were noted in skeletal maturity. In the younger group, hockey players had the highest bone age while the soccer players had the lowest bone age. In the adolescent group, gymnasts and hockey players were characterized by higher skeletal maturity compared with controls. An interaction between the age and sport type effects was apparent in skeletal maturity, reflecting the fact that among the children, the soccer players were significantly less mature than the rest of the groups, while in the adolescents, the controls were the least skeletally mature. Summary and Conclusions: In summary, radial and tibial SOS are enhanced by the unique loading pattern in each sport (i.e, upper and lower extremities in gymnastics, lower extremities in soccer), with no cumulative effect between childhood and adolescence. That is, the effect of sport participation on bone SOS was apparent already among the young athletes. Enhanced bone properties among athletes of specific sports suggest that participation in these sports can improve bone strength and potential bone health.
Resumo:
Obesity is a condition associated with a wide variety of health problems including hypertension, dyslipidemia, diabetes mellitus, certain forms of cancer, cardiovascular disease, and gallstones (157). TTiere is growing evidence that obesity may also be related to compromised immune function due to altered metabolic, psychological, and physical attributes (93). The aim of this study was to compare: a) immunity-related variables such as frequency of upper respiratory tract infections (URTI) and salivary secretory immunoglobulin A (sIgA) levels between overweight/obese (OB) and normal weight (NW) early-pubertal and late-pubertal girls, and b) stress-related variables such as Cortisol, melatonin, the melatonin/cortisol ratio, testosterone and the testosterone/cortisol ratio. Physical activity levels, stress indicators, and fatigue were used to explain potential differences in the dependent variables. It was hypothesized that the OB females would have lower melatonin (M) and higher Cortisol (C) and testosterone (T) levels compared with NW girls, regardless of maturity status. The altered levels of melatonin, Cortisol, and testosterone, would result in decreased M/C and T/C ratios, despite the increase in testosterone in OB females. It was hypothesized that this altered hormonal status results in a compromised immunity marked by higher frequency of upper respiratory tract infections (URTI) and decreased levels of secretory immunoglobulin A (sIgA). It was also hypothesized that OB girls would participate in less hours of physical activity than their NW counterparts and that this would relate to their stress and immunity levels. Forty (16 early- and 24 late-pubertal) overweight and obese females were compared to fifty-three (27 eariy- and 26 late-pubertal) age-matched normal-weight control subjects. Participants were categorized as early-pubertal (EP) or late-pubertal (LP) using Tanner self-staging of secondary sex characteristics. Subjects were classified into the two adiposity groups according to relative body fat (%BF), where normal weight (NW) subjects had a %BF less than 25%, and overweight and obese (OB) subjects had a %BF greater than 27.5%. Participants completed a number of questionnaires and information was collected on menstrual history, smoking history, alcohol and caffeine consumption, and medical history. Following the determination of maturity status, a complete anthropometric assessment was made including height, body mass, and body composition. All questionnaires and measurements were completed during a one-hour visit between 1 500 and 1900 hours Relative body fat was assessed using bioelectrical impedance analysis. Resting saliva samples were obtained and assayed (ELISA) for testosterone, Cortisol, melatonin and secretory immunoglobulin A. Physical activity was self-reported using the Godin- Shephard Leisure time questionnaire, and quantified using Actigraph GTIM accelerometers, which participants wore for seven consecutive days from the time they woke up in the morning, until the time they went to bed. Late-pubertal girls also completed questionnaires on their perceived stress and fatigue. Finally, all participants also filled out a one-month health log to record frequency of symptoms of upper respiratory tract infections (URTI). Significant age effects were found for testosterone, Cortisol, incidence of sickness, and sIgA when controlling for physical activity, however there were no significant effects of adiposity on any of the variables. There was a trend which neared-significance for an effect of adiposity on sIgA (p=0.01). There were no significant differences between the groups on the total selfreported leisure-time physical activity in METs per week, however EP girls recorded significantly greater levels of moderate, hard, and very hard physical activity from accelerometers. Results of the perceived stress and fatigue questionnaires in late-pubertal girls demonstrated that contrary to what was hypothesized, NW girls reported more stress and more fatigue than OB girls. Results of the present study suggest that excess adiposity in early- and latepubescent girls may not have a negative impact on immunity as hypothesized.
Resumo:
Over the last two decades, the prevalence of obesity in the general population has been steadily increasing. Obesity is a major issue in scientific research because it is associated with many health problems, one of which is bone quality. In adult females, adiposity is associated with increased bone mineral density, suggesting that there is a protective effect of fat on bone. However, the association between adiposity and bone strength during childhood is not clear. Thus, the purpose of this study was to compare bone strength, as reflected by speed of sound (SOS), of overweight and obese girls and adolescents with normal-weight age-matched controls. Data from 75 females included normal-weight girls (G-NW; body fat:::; 25%; n = 21), overweight and obese girls (GOW; body fat ~ 28%; n = 19), normal-weight adolescents (A-NW, body fat:::; 25%; n = 13) and overweight and obese adolescents (A-OW; body fat ~ 28%; n = 22). Nutrition was assessed with a 24-hour recall questionnaire and habitual physical activity was measured for one week using accelerometry. Using quantitative ultrasound (QUS; Sunlight Omnisense™), bone SOS was measured at the distal radius and mid-tibia. No differences were found between groups in daily total energy, calcium or vitamin D intake. However, all groups were below the recommended daily calcium intake of 1300 mg (Osteoporosis Canada, 2008). Adolescents were significantly less active than girls (14.7 ± 0.6 vs. 6.3 ± 0.6% active for G and A, respectively). OW accumulated significantly less minutes of moderate-to-very vigorous physical activity per day (MVPA) than NW in both age groups (114 ± 6 vs. 57 ± 5 min/day for NW and OW, i respectively). Girls had significantly lower radial SOS (3794 ± 87 vs. 3964 ± 64 mls for G-NW and A-NW, respectively), and tibial SOS (3678 ± 86 vs. 3878 ± 52 mls for G-NW and A-NW, respectively) than adolescents. Radial SOS was similar in the two adiposity groups within each age group. However, tibial SOS was lower in the two overweight groups (3601 ± 75 mls vs. 3739 ± 134 mls for G-OW and A-OW, respectively) compared with the age-matched normal-weight controls. Body fat percentage negatively correlated with tibial SOS in the study sample as a whole (r = -0.30). However, when split into groups, percent bo~y fat correlated with tibial SOS only in the A-OW group (r = -0.53). MVPA correlated with tibial SOS (r = 0.40), once age was partialed out. In conclusion, in contrast withthe higher bone strength characteristic of obese adult women, overweight and obese girls and adolescents are characterized by low tibial bone strength, as assessed with QUS. The differences between adiposity groups in tibial SOS may be at least partially due to the reduced weight-bearing physical activity levels in the overweight girls and adolescents. However, other factors, such as hormonal influences associated with high body fat may also playa role in reducing bone strength in overweight girls. Further research is required to reveal the mechanisms causing low bone strength in overweight and obese children and adolescents.