5 resultados para ACC deaminase
em Brock University, Canada
Resumo:
The Feedback-Related Negativity (FRN) is thought to reflect the dopaminergic prediction error signal from the subcortical areas to the ACC (i.e., a bottom-up signal). Two studies were conducted in order to test a new model of FRN generation, which includes direct modulating influences of medial PFC (i.e., top-down signals) on the ACC at the time of the FRN. Study 1 examined the effects of one’s sense of control (top-down) and of informative cues (bottom-up) on the FRN measures. In Study 2, sense of control and instruction-based (top-down) and probability-based expectations (bottom-up) were manipulated to test the proposed model. The results suggest that any influences of medial PFC on the activity of the ACC that occur in the context of incentive tasks are not direct. The FRN was shown to be sensitive to salient stimulus characteristics. The results of this dissertation partially support the reinforcement learning theory, in that the FRN is a marker for prediction error signal from subcortical areas. However, the pattern of results outlined here suggests that prediction errors are based on salient stimulus characteristics and are not reward specific. A second goal of this dissertation was to examine whether ACC activity, measured through the FRN, is altered in individuals at-risk for problem-gambling behaviour (PG). Individuals in this group were more sensitive to the valence of the outcome in a gambling task compared to not at-risk individuals, suggesting that gambling contexts increase the sensitivity of the reward system to valence of the outcome in individuals at risk for PG. Furthermore, at-risk participants showed an increased sensitivity to reward characteristics and a decreased response to loss outcomes. This contrasts with those not at risk whose FRNs were sensitive to losses. As the results did not replicate previous research showing attenuated FRNs in pathological gamblers, it is likely that the size and time of the FRN does not change gradually with increasing risk of maladaptive behaviour. Instead, changes in ACC activity reflected by the FRN in general can be observed only after behaviour becomes clinically maladaptive or through comparison between different types of gain/loss outcomes.
Resumo:
Whereas the role of the anterior cingulate cortex (ACC) in cognitive control has received considerable attention, much less work has been done on the role of the ACC in autonomic regulation. Its connections through the vagus nerve to the sinoatrial node of the heart are thought to exert modulatory control over cardiovascular arousal. Therefore, ACC is not only responsible for the implementation of cognitive control, but also for the dynamic regulation of cardiovascular activity that characterizes healthy heart rate and adaptive behaviour. However, cognitive control and autonomic regulation are rarely examined together. Moreover, those studies that have examined the role of phasic vagal cardiac control in conjunction with cognitive performance have produced mixed results, finding relations for specific age groups and types of tasks but not consistently. So, while autonomic regulatory control appears to support effective cognitive performance under some conditions, it is not presently clear just what factors contribute to these relations. The goal of the present study was, therefore, to examine the relations between autonomic arousal, neural responsivity, and cognitive performance in the context of a task that required ACC support. Participants completed a primary inhibitory control task with a working memory load embedded. Pre-test cardiovascular measures were obtained, and ontask ERPs associated with response control (N2/P3) and error-related processes (ERN/Pe) were analyzed. Results indicated that response inhibition was unrelated to phasic vagal cardiac control, as indexed by respiratory sinus arrhythmia (RSA). However, higher resting RSA was associated with larger ERN ampUtude for the highest working memory load condition. This finding suggests that those individuals with greater autonomic regulatory control exhibited more robust ACC error-related responses on the most challenging task condition. On the other hand, exploratory analyses with rate pressure product (RPP), a measure of sympathetic arousal, indicated that higher pre-test RPP (i.e., more sympathetic influence) was associated with more errors on "catch" NoGo trials, i.e., NoGo trials that simultaneously followed other NoGo trials, and consequently, reqviired enhanced response control. Higher pre-test RPP was also associated with smaller amplitude ERNs for all three working memory loads and smaller ampUtude P3s for the low and medium working memory load conditions. Thus, higher pretest sympathetic arousal was associated with poorer performance on more demanding "catch" NoGo trials and less robust ACC-related electrocortical responses. The findings firom the present study highlight tiie interdependence of electrocortical and cardiovascular processes. While higher pre-test parasympathetic control seemed to relate to more robust ACC error-related responses, higher pre-test sympathetic arousal resulted in poorer inhibitory control performance and smaller ACC-generated electrocortical responses. Furthermore, these results provide a base from which to explore the relation between ACC and neuro/cardiac responses in older adults who may display greater variance due to the vulnerabihty of these systems to the normal aging process.
Resumo:
The ability to monitor and evaluate the consequences of ongoing behaviors and coordinate behavioral adjustments seems to rely on networks including the anterior cingulate cortex (ACC) and phasic changes in dopamine activity. Activity (and presumably functional maturation) of the ACC may be indirectly measured using the error-related negativity (ERN), an event-related potential (ERP) component that is hypothesized to reflect activity of the automatic response monitoring system. To date, no studies have examined the measurement reliability of the ERN as a trait-like measure of response monitoring, its development in mid- and late- adolescence as well as its relation to risk-taking and empathic ability, two traits linked to dopaminergic and ACC activity. Utilizing a large sample of 15- and 18-year-old males, the present study examined the test-retest reliability of the ERN, age-related changes in the ERN and other components of the ERP associated with error monitoring (the Pe and CRN), and the relations of the error-related ERP components to personality traits of risk propensity and empathy. Results indicated good test-retest reliability of the ERN providing important validation of the ERN as a stable and possibly trait-like electrophysiological correlate of performance monitoring. Ofthe three components, only the ERN was of greater amplitude for the older adolescents suggesting that its ACC network is functionally late to mature, due to either structural or neurochemical changes with age. Finally, the ERN was smaller for those with high risk propensity and low empathy, while other components associated with error monitoring were not, which suggests that poor ACe function may be associated with the desire to engage in risky behaviors and the ERN may be influenced by the extent of individuals' concern with the outcome of events.
Resumo:
Imaging studies have shown reduced frontal lobe resources following total sleep deprivation (TSD). The anterior cingulate cortex (ACC) in the frontal region plays a role in performance monitoring and cognitive control; both error detection and response inhibition are impaired following sleep loss. Event-related potentials (ERPs) are an electrophysiological tool used to index the brain's response to stimuli and information processing. In the Flanker task, the error-related negativity (ERN) and error positivity (Pe) ERPs are elicited after erroneous button presses. In a Go/NoGo task, NoGo-N2 and NoGo-P3 ERPs are elicited during high conflict stimulus processing. Research investigating the impact of sleep loss on ERPs during performance monitoring is equivocal, possibly due to task differences, sample size differences and varying degrees of sleep loss. Based on the effects of sleep loss on frontal function and prior research, it was expected that the sleep deprivation group would have lower accuracy, slower reaction time and impaired remediation on performance monitoring tasks, along with attenuated and delayed stimulus- and response-locked ERPs. In the current study, 49 young adults (24 male) were screened to be healthy good sleepers and then randomly assigned to a sleep deprived (n = 24) or rested control (n = 25) group. Participants slept in the laboratory on a baseline night, followed by a second night of sleep or wake. Flanker and Go/NoGo tasks were administered in a battery at 1O:30am (i.e., 27 hours awake for the sleep deprivation group) to measure performance monitoring. On the Flanker task, the sleep deprivation group was significantly slower than controls (p's <.05), but groups did not differ on accuracy. No group differences were observed in post-error slowing, but a trend was observed for less remedial accuracy in the sleep deprived group compared to controls (p = .09), suggesting impairment in the ability to take remedial action following TSD. Delayed P300s were observed in the sleep deprived group on congruent and incongruent Flanker trials combined (p = .001). On the Go/NoGo task, the hit rate (i.e., Go accuracy) was significantly lower in the sleep deprived group compared to controls (p <.001), but no differences were found on false alarm rates (i.e., NoGo Accuracy). For the sleep deprived group, the Go-P3 was significantly smaller (p = .045) and there was a trend for a smaller NoGo-N2 compared to controls (p = .08). The ERN amplitude was reduced in the TSD group compared to controls in both the Flanker and Go/NoGo tasks. Error rate was significantly correlated with the amplitude of response-locked ERNs in control (r = -.55, p=.005) and sleep deprived groups (r = -.46, p = .021); error rate was also correlated with Pe amplitude in controls (r = .46, p=.022) and a trend was found in the sleep deprived participants (r = .39, p =. 052). An exploratory analysis showed significantly larger Pe mean amplitudes (p = .025) in the sleep deprived group compared to controls for participants who made more than 40+ errors on the Flanker task. Altered stimulus processing as indexed by delayed P3 latency during the Flanker task and smaller amplitude Go-P3s during the Go/NoGo task indicate impairment in stimulus evaluation and / or context updating during frontal lobe tasks. ERN and NoGoN2 reductions in the sleep deprived group confirm impairments in the monitoring system. These data add to a body of evidence showing that the frontal brain region is particularly vulnerable to sleep loss. Understanding the neural basis of these deficits in performance monitoring abilities is particularly important for our increasingly sleep deprived society and for safety and productivity in situations like driving and sustained operations.
Resumo:
This thesis tested a model of neurovisceral integration (Thayer & Lane, 2001) wherein parasympathetic autonomic regulation is considered to play a central role in cognitive control. We asked whether respiratory sinus arrhythmia (RSA), a parasympathetic index, and cardiac workload (rate pressure product, RPP) would influence cognition and whether this would change with age. Cognitive control was measured behaviourally and electrophysiologically through the error-related negativity (ERN) and error positivity (Pe). The ERN and Pe are thought to be generated by the anterior cingulate cortex (ACC), a region involved in regulating cognitive and autonomic control and susceptible to age-related change. In Study 1, older and younger adults completed a working memory Go/NoGo task. Although RSA did not relate to performance, higher pre-task RPP was associated with poorer NoGo performance among older adults. Relations between ERN/Pe and accuracy were indirect and more evident in younger adults. Thus, Study 1 supported the link between cognition and autonomic activity, specifically, cardiac workload in older adults. In Study 2, we included younger adults and manipulated a Stroop task to clarify conditions under which associations between RSA and performance will likely emerge. We varied task parameters to allow for proactive versus reactive strategies, and motivation was increased via financial incentive. Pre-task RSA predicted accuracy when response contingencies required maintenance of a specific item in memory. Thus, RSA was most relevant when performance required proactive control, a metabolically costly strategy that would presumably be more reliant on autonomic flexibility. In Study 3, we included older adults and examined RSA and proactive control in an additive factors framework. We maintained the incentive and measured fitness. Higher pre-task RSA among older adults was associated with greater accuracy when proactive control was needed most. Conversely, performance of young women was consistently associated with fitness. Relations between ERN/Pe and accuracy were modest; however, isolating ACC activity via independent component analysis allowed for more associations with accuracy to emerge in younger adults. Thus, performance in both groups appeared to be differentially dependent on RSA and ACC activation. Altogether, these data are consistent with a neurovisceral integration model in the context of cognitive control.