3 resultados para A cultural history of animals 1-6

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Preexisting fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the relationship between endothelin-1 (ET-1) stimulation and reactive oxygen species (ROS) production unknown in adventitial fibroblasts, I examined the ROS response to ET-1 and angiotensin (Ang II). ET-1 -induced ROS peaked following 4 hrs of ET-1 stimulation and was inhibited by an ETA receptor antagonist (BQ 123, 1 uM) an extracellular signal-regulated kinase (ERK) 1/2 inhibitor (PD98059, 10 uM), and by both a specific, apocynin (10 uM), and non-specific, diphenyleneiodonium (10 uM), NAD(P)H oxidase inhibitor. NOX2 knockout fibroblasts did not produce an ET-1 induced change in ROS levels. Ang II treatment increased ROS levels in a biphasic manner, with the second peak occurring 6 hrs following stimulation. The secondary phase of Ang II induced ROS was inhibited by an ATi receptor antagonist, Losartan (100 uM) and BQ 123. In conclusion, ET-1 induces ROS production primarily through an ETA-ERKl/2 NOX2 pathway, additionally, Ang II-induced ROS production also involves an ETa pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hg(18-Crown-6)C12 and Cd(18-Crown-6)C12 are isostructura1, space group Cl~ Z = 2. For the mercury compound, a = 10.444(2) A° , b = 11. 468(1) A° , c = 7.754(1) A° , a = 90.06(1)°, B = 82.20(1)°, Y = 90.07(1)°, Dobs = 1.87, Dca1c = 1.93, V = 920.05 13, R = 4.66%. For the cadmium compound, 000 a = 10.374(1) A, b = 11.419(2) A, c = 7.729(1) A, a = 89.95(1)°, B = 81.86(2)°, Y = 89.99(1)°, Dobs = 1.61, Dcalc = 1.64, V = 906.4613, R = 3.95%. The mercury and cadmium ions exhibit hexagonal bipyramidal coordination, with the metal ion located on a centre of symmetry in the plane of the oxygen atoms. The main differences between the two structures are an increase in the metal-oxygen distance and a reduction in the metalchloride distance when the central ion changes from Cd2+ to Hg2+. These differences may be explained in terms of the differences in hardness or softness of the metal ions and the donor atoms.