8 resultados para 78 kD glucose-regulated protein precursor
em Brock University, Canada
Resumo:
The relative ease to concentrate and purify adenoviruses, their well characterized mid-sized genome, and the ability to delete non-essential regions from their genome to accommodate foreign gene, made adenoviruses a suitable candidate for the construction of vectors. The use of adenoviral vectors in gene therapy, vaccination, and as a general vector system for expressing foreign genes have been documented for some time. In this study, the objective was to rescue a BAV3 E1 or E3 recombinant vector carrying the kanamycin resistant gene, a dominant selectable marker with useful applications in studying vectored gene expression in mammalian cells. To accomplish the objective of this study, more information about BAV3 DNA sequences was required in order to make the manipulation of the virus genome accessible. Therefore, sequencing of the BAV3 genome from 1 1 .7% to 30.8% was carried out. Analysis of the determined sequences revealed the primary structure of important viral gene products coded by E2 including BAV3 DNA pol and precursor to terminal protein. Comparative analysis of these proteins with their counterparts from human and non human adenoviruses revealed important insights as to the evolutionary lineage of BAV3. In order to insert the kanamycin resistance gene in either E1 or E3, it was necessary to delete BAV3 sequences to accommodate the foreign gene so as not to exceed the limit of the packaging capacity of the virus. To construct a recombinant BAV3 in which a foreign gene was inserted in the deleted E1 region, an E1 shuttle vector was constructed. This involved the deletion from the viral sequences a region between 1.3% to 9% and inserting the kanamycin resistance gene to replace the deletion. The E1 shuttle vector contained the left (0%- 53.9%) segment of the genome and was expected to generate BAV3 recombinants that can be grown and propagated in cells that can complement the missing E1 functions. To construct a similar shuttle vector for E3 deletion, DNA sequences extending from 78.9% to 82.5% (1281 bp) were deleted from within the E3 region that had been cloned into a plasmid vector. The deleted region corresponds to those that have been shown to be non-essential for viral replication in cell culture. The resulting plasmid was used to construct another recombinant plasmid with BAV3 DNA sequences extending from 37.1% to 100% and with a deletion of E3 sequences that were replaced by kanamycin resistance gene. This shuttle plasmid was used in cotransfections with digested viral DNA in an attempt to rescue a recombinant BAV3 carrying the kanamycin resistance gene to replace the deleted E3. In spite of repeated attempts of transfection, El or E3 recombinant BAV3 were not isolated. It seems that other approaches should be applied to make a final conclusion on BAV3 infectivity.
Resumo:
This thesis compares the responses of regenerating forelimb tissues of the newt Notophthalmu..f vlridescens to the stresses of hyperthermia and ID.echanical injury of amputation. In particular, both quantitative and qualitative changes in the synthesis of soluble proteins in stump tissues, including those of the heat shock protein family (HSP70-1ike) were examined. Results from SDS-PAGEfluorography indicate that the trauma of amputation mimics the heat shock response both quantitatively and temporally in its transient repression of the synthesis of most normal cellular proteins, and qualitatively. in the locaJized expression of two unique proteins (hsp30 and hsp70). Fluorography of proteins separated by twodimensional gets revealed that thelCl4:alizedt amputation induced 70kDa protein (amp70) was distinct from the more basic newt hsp/hsc70 isoforms. Although limb amputation resulted in an increase in the synthesis of HSP70 mRNA analogous to that induced by heat 3.b.OCKf amp70 did not cross-react with murine monoclonal antibodies directed against both the inducible and cognate HSP70 proteins of the human. Thus, the possible relationship of amp70 to other members of the HSP70-1ike protein family remains unclear. Western analyses indicated that the levels of the constitutive form of HSP70 (hsc70) were found to be regulated in a stage-dependent manner in the distal stump tissues of the regen,erating forelimb of the newt. The highest levels were found in the mid-late bud stage, a period during which rapidly dividing blastema cells begin to redifferentiate in a proximodistal direction. Immediately after amputation) hsc70 synthesis and accumulation was depressed below steady-state levels measured in the unamputated limb~ The results are discussed in light of a possible role for HSPs and amputatio~ induced proteins in the epimorphic regeneration of the amphibian limb.
Resumo:
Cell surface proteins obtained by alkaline extraction from isolated cell walls of Mortierella pusilla and M. candelabrum, host and nonhost, respectively, to the mycoparasite, Piptocephalis virginiana, were tested for their ability to agglutinate mycoparasite spores. The host cell wall protein extract had a high agglutinating activity (788 a.u. mg- t ) as compared with the nonhost extract (21 a.li. mg- t ). SDS-polyacrylamide gel electrophoresis of the cell wall proteins revealed four protein bands, a, b, c, and d (Mr 117, 100, 85 and 64 kd, respectively) at the host surface, but not at the nonhost surface, except for the faint band c. Deletion of proteins b or c from the host cell wall protein extract significantly reduced its agglutinating activity. Proteins band c, obtained as purified preparations by a series of procedures, were shown to be two glycoproteins. Carbohydrate analysis by gas chromatography demonstrated that glucose and Nacetylglucosamine were the major carbohydrate components of the glycoproteins. It was further shown that the agglutinating activity of the pure preparation containing both band c was 500-850 times that of the single glycoproteins, suggesting the involvement of both glycoproteins in agglutination. The results suggest that the glycoproteins band c are the two subunits of agglutinin present at the host cell surface. The two glycoproteins band c purified from the host cell wall protein extract were further examined after various treatments for their possible role in agglutination, attachment and appressorium formation by the mycoparasite. Results obtained by agglutination and attachment tests showed: (1) the two glycoprotein-s are not only an agglutinin responsible for the mycoparasite spore agglutination, but may also serve as a receptor for the specific recognition, attachment and appressorium formation by the mycoparasite; (2) treatment of the rnycoparasite spores with various sugars revealed that arabinose, glucose and N-acetylglucosamine inhibited the agglutination and attachment activity of the glycoproteins, however, the relative percentage of appressorium formation was not affected by the above sugars; (3) the two glycoproteins are relatively stable with respect to their agglutinin and receptor functions. The present results suggest that the agglutination and attachment may be mediated directly by certain sugars present at the host and mycoparasite cell surfaces while the appressorlum formation may be the response of complementary combinations of both sugar and protein, the two parts of the glycoproteins at the interacting surfaces of two fungi.
Resumo:
Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.
Resumo:
Vitamin E is a well known fat soluble chain breaking antioxidant. It is a general tenn used to describe a family of eight stereoisomers of tocopherols. Selective retention of a-tocopherol in the human circulation system is regulated by the a -Tocopherol Transfer Protein (a-TIP). Using a fluorescently labelled a-tocopherol (NBD-a-Toc) synthesized in our laboratory, a fluorescence resonance energy transfer (FRET) assay was developed to monitor the kinetics of ligand transfer by a-hTTP in lipid vesicles. Preliminary results implied that NBD-a-Toe simply diffused from 6-His-a-hTTP to acceptor membranes since the kinetics of transfer were not responsive to a variety of conditions tested. After a series of trouble shooting experiments, we identified a minor contaminant, E coli. outer membrane porin F (OmpF) that co-purified with 6-His-a-hTTP from the metal affinity column as the source of the problem. In order to completely avoid OmpF contamination, a GST -a-hTTP fusion protein was purified from a glutathione agarose column followed by an on-column thrombin digestion to remove the GST tag. We then demonstrated that a-hTTP utilizes a collisional mechanism to deliver its ligand. Furthennore, a higher rate of a-tocopherol transfer to small unilamellar vesicles (SUV s) versus large unilamellar vesicles (LUV s) indicated that transfer is sensitive to membrane curvature. These findings suggest that ahTTP mediated a-Toc transfer is dominated by the hydrophobic nature of a-hTTP and the packing density of phospholipid head groups within acceptor membranes. Based on the calculated free energy change (dG) when a protein is transferred from water to the lipid bilayer, a model was generated to predict the orientation of a-hTTP when it interacts with lipid membranes. Guided by this model, several hydrophobic residues expected to penetrate deeply into the bilayer hydrophobic core, were mutated to either aspartate or alanine. Utilizing dual polarization interferometry and size exclusion vesicle binding assays, we identified the key residues for membrane binding to be F 165, F 169 and 1202. In addition, the rates of ligand transfer of the u-TTP mutants were directly correlated to their membrane binding capabilities, indicating that membrane binding was likely the rate limiting step in u-TTP mediated transfer of u-Toc. The propensity of u-TTP for highly curved membrane provides a connection to its colocalization with u-Toc in late endosomes.
Resumo:
Cancer cells are known to display increased glucose uptake and consumption. The glucose transporter (GLUT) proteins facilitate glucose uptake, however, their exact role in cancer metabolism remains unclear. The present study examined mRNA and protein expression of GLUT1, GLUT3, GLUT4 and GLUT12 in lung, breast and prostate cancer cells and corresponding noncancerous cells. Additionally, GLUT expression was determined in tumours from mice xenografted with human cancer cells. Differences in the mRNA and protein expression of GLUTs were found between cancerous and corresponding noncancerous cells. These findings demonstrate abundant expression of GLUT1 in cancer and highlight the importance of GLUT3 as it was expressed in several cancer cells and tumours. GLUT expression patterns in vitro were supported by the in vivo findings. The study of GLUT protein expression in cancer is important for understanding cancer metabolism and may lead to identification of biomarkers of cancer progression and development of target therapies.
Resumo:
The first and rate-limiting step of lipolysis is the removal of the first fatty acid from a triglyceride molecule; it is catalyzed by adipose triglyceride lipase (ATGL). ATGL is co-activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 protein (G0S2). G0S2 has also recently been identified as a positive regulator of oxidative phosphorylation within the mitochondria. Previous research has demonstrated in cell culture, a dose dependent mechanism for inhibition by G0S2 on ATGL. However our data is not consistent with this hypothesis. There was no change in G0S2 protein content during an acute lipolytic inducing set of contractions in both whole muscle, and isolated mitochondria yet both ATGL and G0S2 increase following endurance training, in spite of the fact that there should be increased reliance on intramuscular lipolysis. Therefore, inhibition of ATGL by G0S2 appears to be regulated through more complicated intracellular or post-translation regulation.
Resumo:
Studies have demonstrated that the oxysterol binding protein (OSBP) acts as a phosphatidylinositol phosphate (PIP)-sterol exchanger at membrane contact sites (MCS) of the endoplasmic reticulum (ER) and Golgi. OSBP is known to pick up phosphatidylinositol-4-phosphate (PI(4)P) from the ER, transfer it to the trans-Golgi in exchange for a cholesterol molecule that is then transferred from the trans-Golgi to the ER. Upon further examination of this pathway by Ridgway et al. (1), it appeared that phosphorylation of OSBP played a role in the localization of OSBP. The dephosphorylation state of OSBP was linked to Golgi localization and the depletion of cholesterol at the ER. To mimic the phosphorylated state of OSBP, the mutant OSBP-S5E was designed by Ridgway et al. (1). The lipid and sterol recognition by wt-OSBP and its phosphomimic mutant OSBP-S5E were investigated using immobilized lipid bilayers and dual polarization interferometry (DPI). DPI is a technique in which the protein binding affinity to immobilized lipid bilayers is measured and the binding behavior is examined through real time. Lipid bilayers containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and varying concentrations of PI(4)Ps or sterols (cholesterol or 25-hydroxycholesterol) were immobilized on a silicon nitride chip. It was determined that wt-OSBP binds differently to PI(4)P-containing bilayers compared to OSBP-S5E. The binding behavior suggested that wt-OSBP extracts PI(4)P and the change in the binding behavior, in the case of OSBP-S5E, suggested that the phosphorylation of OSBP may prevent the recognition and/or extraction of PI(4)P. In the presence of sterols, the overall binding behavior of OSBP, regardless of phosphorylation state, was fairly similar. The maximum specific bound mass of OSBP to sterols did not differ as the concentration of sterols increased. However, comparing the maximum specific bound mass of OSBP to cholesterol with oxysterol (25-hydroxycholesterol), OSBP displayed nearly a 2-fold increase in bound mass. With the absence of the wt-OSBP-PI(4)P binding behavior, it can be speculated that the sterols were not extracted. In addition, the binding behavior of OSBP was further tested using a fluorescence based binding assay. Using 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (22-NBD cholesterol), wt-OSBP a one site binding dissociation constant Kd, of 15 ± 1.4 nM was determined. OSBP-S5E did not bind to 22-NBD cholesterol and Kd value was not obtained.