4 resultados para 280212 Neural Networks, Genetic Alogrithms and Fuzzy Logic
em Brock University, Canada
Resumo:
The freshwater mollusc Lymnaea stagnalis was utilized in this study to further the understanding of how network properties change as a result of associative learning, and to determine whether or not this plasticity is dependent on previous experience during development. The respiratory and neural correlates of operant conditioning were first determined in normally reared Lymnaea. The same procedure was then applied to differentially reared Lymnaea, that is, animals that had never experienced aerial respiration during their development. The aim was to determine whether these animals would demonstrate the same responses to the training paradigm. In normally reared animals, a behavioural reduction in aerial respiration was accompanied by numerous changes within the neural network. Specifically, I provide evidence of changes at the level of the respiratory central pattern generator and the motor output. In the differentially reared animals, there was little behavioural data to suggest learning and memory. There were, however, significant differences in the network parameters, similar to those observed in normally reared animals. This demonstrated an effect of operant conditioning on differentially reared animals. In this thesis, I have identified additional correlates of operant conditioning in normally reared animals and provide evidence of associative learning in differentially reared animals. I conclude plasticity is not dependent on previous experience, but is rather ontogenetically programmed within the neural network.
Resumo:
Seven crayfish species from three genera of the subfamily Cambarinae were electrophoretically examined for genetic variation at a total of twenty-six loci. Polymorphism was detected primarily at three loci: Ao-2, Lap, and Pgi. The average heterozygosities over-all loci for each species were found to be very low when compared to most other invertebrate species that have been examined electrophoretically. With the exception of Cambarus bartoni, the interpopulation genetic identities are high within any given species. The average interspecific identities are somewhat lower and the average intergeneric identities are lower still. Populations, species and genera conform to the expected taxonomic progression. The two samples of ~ bartoni show high genetic similarity at only 50 percent of the loci compared. Locus by locus identity comparisons among species yield U-shaped distributions of genetic identities. Construction of a phylogenetic dendrogram using species mean genetic distances values shows that species grouping is in agreement with morphological taxonomy with the exception of the high similarity between Orconectespropinquus and Procambarus pictus. This high similarity suggests the possibility of a regulatory change between the two species. It appears that the low heterozygosities, high interpopulation genetic identities, and taxonomic mispositioning can all be explained on the basis of low mutation rates.
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
Genetic Programming (GP) is a widely used methodology for solving various computational problems. GP's problem solving ability is usually hindered by its long execution times. In this thesis, GP is applied toward real-time computer vision. In particular, object classification and tracking using a parallel GP system is discussed. First, a study of suitable GP languages for object classification is presented. Two main GP approaches for visual pattern classification, namely the block-classifiers and the pixel-classifiers, were studied. Results showed that the pixel-classifiers generally performed better. Using these results, a suitable language was selected for the real-time implementation. Synthetic video data was used in the experiments. The goal of the experiments was to evolve a unique classifier for each texture pattern that existed in the video. The experiments revealed that the system was capable of correctly tracking the textures in the video. The performance of the system was on-par with real-time requirements.