6 resultados para 2-hydroxynicotinic acids
em Brock University, Canada
Resumo:
A number of synthetically useful ring systems can be prepared via the intramolecular insertion of a metal-stabilized carbenoid into a heteroaromatic systems. The chemical outcome of these reactions are dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the carbenoid moiety with the aromatic fragment. Our work with furanyl and thienyl systems containing a single methylene tether have allowed for some rather atypical chemistry. For example, treatment of l-diazo-3-(2-thienyl)-2-propanone (6) with catalytic rhodium (II) acetate yields 5,6- dihydro-4^-cyclopenta[Z>]thiophen-5-one (3) while, the isomeric l-diazo-3-(3-thienyl)-2- propanone(15) gives a spiro-disulphide (20). Novel chemistry was also exhibited in the analogous furanyl systems. While treatment of l-diazo-3-(3-furanyl)-2-propanone (52) with Rh2(OAc)4 resulted in the expected 2-(4-Oxo-2-cyclopentenyliden)acetaldehyde (54), isomeric l-diazo-3-(2- furanyl)-2-propanone (8) undergoes vinylogous Wolff rearrangement to give a mixture of 6a-methyl-2,3,3a,6a-tetrahydrofuro[2,i-^>]furan-2-one (44) and 2-(2-methyl-3-furyl)acetic acid (43). Rhodium acetate catalyzed decomposition of l-diazo-3-(3-benzofuranyl)-2- propanone (84) and l-diazo-3-(2-benzofuranyl)-2-propanone (69)also allows for vinylogous Wolff rearrangement, a chemistry unseen in benzofuranyl systems with longer tethers. A number of interesting products were isolated from the trapping of intermediate ketenes. Decomposition of l-diazo-3-(3-benzothienyl)-2-propanone (100) resulted in the formation of 2,3-dihydro-l//-benzo[^]cyclopenta[^thiophen-2-one (102). However, in addition to (102), a dimer was also generated from the decomposition of l-diazo-3-(2- benzothienyl)-2-propanone (109). The insight into the mechanistic underpinnings of the above reactions are provided by molecular modeling at a PM3 level.
Resumo:
Membranes are dynamic structures that affect cell structure and function. Compositional changes ofmembranes have been shown with the application of a perturbation; however these are limited to whole tissue analysis. The purpose of this thesis was to compare the phospholipid (PL) fatty acid (FA) composition of rat whole muscle (Wm) to 1) purified and non-purified subsarcolemmal (SS) mitochondria in soleus, plantaris, and red gastrocnemius, and 2) sarcolemma, transverse-tubules, SS and intermyofibrillar (IMF) mitochondria fix)m whole hindlimb. The major findings were that 1) contamination significantly altered the PL FA composition of the SS mitochondrial membrane fraction, 2) Wm and SS mitochondria compositions differed between muscle types, and 3) Wm did not accurately reflect the PL FA composition of any isolated subcellular membranes, with each being unique from each other. As such, the relevancy of the trends reported in the literature of the effects of perturbations on Wm may be limited.
Resumo:
Pyruvate dehydrogenase (PDH) is an important regulator of carbohydrate oxidation during exercise and its activity can be down-regulated by an increase in dietary fat. The purpose of this study was to determine the acute metabolic effects of differential dietary fatty acids on the activation of PDH in its active form (PDHa) at rest and at the onset of moderate-intensity exercise. University-aged male subjects (n=7) underwent 2 fat loading trials spaced at least 2 weeks apart. Subjects consumed saturated (SFA) or polyunsaturated (PUFA) fat over the course of 5 hours. Following this, participants cycled at 65% VO2 max for 15 min. Muscle biopsies were taken prior to and following fat loading and at 1 min exercise. Plasma free fatty acids increased from 0.15 ± 0.07 to 0.54 ± 0.19 mM over 5 hours with SFA and from 0.1 1 ± 0.04 to 0.35 ±0.13 mM with PUFA. PDHa activity was unchanged following fat loading, but increased at the onset of exercise in the SFA trial, from 1 .4 ± 0.4 to 2.2 ± 0.4 /xmol/min/kg wet wt. This effect was negated in the PUFA trial (1 .2 ± 0.3 to 1 .3 ± 0.3 pimol/min/kg wet wt.). PDH kinase (PDK) was unchanged in both trials, suggesting that the attenuation of PDHa activity with PUFA was a result of changes in the concentrations of intramitochondrial effectors, more specifically intramitochondrial NADH or Ca^*. Our findings suggest that attenuated PDHa activity participates in the preferential oxidation of PUFA during moderateintensity exercise.
Resumo:
Recent studies have shown that the rhodium (II) acetate decomposition chemistry observed for a-diazoketones tethered to thienyl, furanyl, and benzofuranyl moieties is dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the diazoketone moiety with the aromatic fragment. The present thesis expands on these results and focuses on a-diazoketones tethered to benzothiophenes, pyrroles and indoles by a methylene linker. In the case of benzothiophenes, it was shown that the rhodium catalyst decomposition of I-diazo-4-(3-benzothienyl)-2-butanone (146) and 1-diazo-4-(3benzothienyl)- 2-butanone (152) allow for the isolation of 1,2,3a,3b-tetrahydro-3Hbenzo[ b]cyclopenta[1,3]cyclopropa- [1 ,2-d]thiophen-3-one (147) and 1,2,3a,3btetrahydro- 3H-benzo[b]cyclopenta[1,3]cyclopropa[1,2-d]thiophen-3-one (153). However treatment of 1-diazo-3-(3-Benzothienyl)-2-Propanone (165) with Rh(II) acetate results in the formation of 2,3-Dihydro-1H-benzo[b]cyclopenta[d]thiophen-2-one (159), while 1diazo- 3-(2-Benzothienyl)-2-Propanone with the same condition gives 5,5-bis( 1benzothiophen- 2-ylmethyl)-2(5H)-furanone (166) along with the tricycle 159. The chemistry of the pyrrolyl and the indolyl moieties linked to terminal adiazoketone systems was also investigated. The decomposition of I-diazo-(2-pyrrolyl)-2propanone (173) results in the formation of two products; the N-H insertion product IHpyrrolizin- 2(3H)-one (176) and the alkylation product 4,6-dihydrocyclopenta[b]pyrrol5( 1 H)-one (180). When 1-Diazo-3-(3-indoly)-3-propanone (194) is treated with catalytic amount of Rh (II) 3,4-dihydrocyclopenta[b]indol-2(1H)-one (193) is isolated quantitatively. The later reaction when monitored using IH NMR the intermediate 200 can be seen whose structure was confirmed by the comparison to series of model compounds. The mechanisms underlying these reactions as well as their synthetic utility is discussed.
Resumo:
Adenoviruses are nonenveloped icosahedral shaped particles. The double stranded DNA viral genome is divided into 5 major early transcription units, designated E1 A, E1 B, and E2 to E4, which are expressed in a regulated manner soon after infection. The gene products of the early region 3 (E3), shown to be nonessential for viral replication in vitro, are believed to be involved in counteracting host immunosurveillance. In order to sequence the E3 region of Bovine adenovirus type 2 (BAV2) it was necessary to determine the restriction map for the plasmid pEA48. A physical restriction endonuclease map for BamHl, Clal, Eco RI, Hindlll, Kpnl, Pstt, Sail, and Xbal was constructed. The DNA insert in pEA48 was determined to be viral in origin using Southern hybridization. A human adenovirus type 5 recombinant plasmid, containing partial DNA fragments of the two transcription units L4 and L5 that lie just outside the E3, was used to localize this region. The recombinant plasmid pEA was subcloned to facilitate sequencing. The DNA sequences between 74.8 and 90.5 map units containing the E3, the hexon associated protein (pVIII), and the fibre gene were determined. Homology comparison revealed that the genes for the hexon associated pV11I and the fibre protein are conserved. The last 70 amino acids of the BAV2 pV11I were the most conserved, showing a similarity of 87 percent with Ad2 pV1I1. A comparison between the predicted amino acid sequences of BAV2 and Ad40, Ad41 , Ad2 and AdS, revealed that they have an identical secondary structure consisting of a tail, a shaft and a knob. The shaft is composed of 22, 15 amino acid motifs, with periodic glycines and hydrophobic residues. The E3 region was found to consist of about 2.3 Kbp and to encode four proteins that were greater than 60 amino acids. However, these four open reading frames did not show significant homology to any other known adenovirus DNA or protein sequence.
Resumo:
The fatty acid composition of the total cellular lipids of Choanephora cucurbitarum incubated for 96 hrs on either glucose-ammonium sulfate or malt-weast extract media was determined. The major fatty acids were palmitic, palmitoleic, stearic and linoleic acids. The saturated fatty acid possessing the longest acyl chain was stearate (C 18:0). The presence of glutamic acid (2.0 x 10-1% or 1.36 x la-2M) in either of the above growth media resulted in increase in percent of 1f-linolenic acid, decrease in percent of linoleic ~iCid and appearance of a new series of fatty acid> C ~8 e.g. C ",,,,'V' C2k:O, C26,O. The addition of glutamic acid had no effect on the lipid yield but slightly decreased the degree of unsaturation. Compounds which duplicated the effect of glutamic acid were acetate, malate, citrate, succinate, 0( -ketoglutarate, prOline, -y -aminobutyric acid and glucose (3%) but not aspartic acid or alanine. ~o correlation was found between glutamic acid pool concentration and the presence in the growth medium of those compounds which stimulate long chain fatty acid production. Four hours of incubation with 27 JJ 1-1 glutamate supported the production of long chain fatty acids. This stimulation is inhibited if 272 .u M isophthalic acid is added with 27 AJ M glutamate. But, long chain fatty acids were detected when 27 JJ M eX -ketoglutarate is also present in the incubation mixture. Five hours of incubation with 100 ,Mg/ml of cycloheximide resulted in over 9CY/o inhibition of cytoplasmic :protein synthesise Glutamate (27 .uM) enhanced the synthesis of long chain fatty acids under these conditions. These findings are discussed in an attempt to provide a plausible explanation COmmon to compounds that support the production of long chain fatty acids.