2 resultados para 15-YEAR FOLLOW-UP

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Later-born siblings of children with autism spectrum disorder (ASD) are considered at biological risk for ASD and the broader autism phenotype. Early screening may detect early signs of ASD and facilitate intervention as soon as possible. This follow-up study revisits and re-examines a second-degree autism screener for children at biological risk of autism, the Parent Observation Early Markers Scale (POEMS, Feldman et al., 2012). Using available follow-up information, 110 children (the original 108 infants plus 2 infants recruited after the completion of the original study) were divided into three groups: diagnosed group (n = 13), lost diagnosis group (n = 5), and undiagnosed group (n = 92). The POEMS continued to show acceptable predictive validity. The POEMS total scores and mean number of elevated items were significantly higher in the diagnosed group than the undiagnosed group. The lost diagnosis group did not differ from the undiagnosed group on POEMS total scores and elevated items at any age, but the lost diagnosis group had significantly lower total scores and number of elevated items than the diagnosed group starting at 18 months. Both ASD core and subsidiary behaviours differentiated the diagnosed and undiagnosed groups from 9−36 months of age. Using 70 as a cut-off score, sensitivity, specificity, and positive predictive value (PPV) were .69, .84, and .38, respectively. The study provides further evidence that the POEMS may serve as a low-cost early screener for ASD in at risk children and pinpoint specific developmental and behavioural problems that may be amenable to very early intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite being considered a disease of smokers, approximately 10-15% of lung cancer cases occur in never-smokers. Lung cancer risk prediction models have demonstrated excellent ability to discriminate cases from non-cases, and have been shown to be more efficient at selecting individuals for future screening than current criteria. Existing models have primarily been developed in populations of smokers, thus there was a need to develop an accurate model in never-smokers. This study focused on developing and validating a model using never-smokers from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cox regression analysis, with six-year follow-up, was used for model building. Predictors included: age, body mass index, education level, personal history of cancer, family history of lung cancer, previous chest X-ray, and secondhand smoke exposure. This model achieved fair discrimination (optimism corrected c-statistic = 0.6645) and good calibration. This represents an improvement on existing neversmoker models, but is not suitable for individual-level risk prediction.