2 resultados para 1-HYDROXYETHYL RADICAL
em Brock University, Canada
Resumo:
1. Triarylamminium radical-cation complexes. The detailed study of manganese, copper and nickel metal-radical complexes with triarylamminium ligands was conducted. Stable, neutral and pseudo-octahedral coordination monometallic complexes with simple monodentate 2,2`-bipyridine ligand containing a redox-active N,N`-(4,4`-dimethoxydiphenyl-amino) substituent were synthesized and fully characterized. The one-electron oxidation process and formation of persistent radical-cation complexes was observed by cyclic voltammetry and spectroelectrochemical measurements. Evans method measurements were performed with radical-cation complexes generated by chemical one-electron oxidation with NOPF6 in acetonitrile. The experimental results indicate ferromagnetic coupling between metal and triarylamminium cation in manganese (II) complex and antiferromagnetic coupling in nickel (II) complex. This data is supported by DFT calculations which also lend weight to the spin polarization mechanism as an operative model for magnetic exchange coupling. Neutral bimetallic complexes with a new ditopic ligand were synthesized and fully characterized, including magnetic and electrochemical studies. Chemical oxidation of these precursor complexes did not generate radical-cations, but dicationic complexes, which was confirmed by UV-vis and EPR-experiments, as well as varied temperature magnetic measurements. DFT calculations for radical-cation complexes are included. A synthetic pathway for polytopic ligand with multiple redox-active triarylamine sites was developed. The structure of the ligand is presumably suitable for -spin polarization exchange model and allows for production of polymetallic complexes having high spin ground states. 2. Base-catalyzed hydrosilylation. A simple reductive base-catalyzed hydrosilation of aldehydes and ketones was adapted to the use of the cheap, safe, and non-toxic polymethylhydrosiloxane (PMHS) instead of the common PhSiH3 and (EtO)3SiH, which present significant cost and safety concerns, respectively. The conversion of silane into pentacoordinate silicate species upon addition of a base was studied in details for the cases of phenyl silane and PMHS and is believed to be essential for the hydrosilylation process. We discovered that nucleophiles (a base or fluoride-anion) induced the rearrangement of PMHS and TMDS into light silanes: MeSiH3 and Me2SiH2, respectively. The reductive properties of PMHS under basic conditions can be attributed to the formation of methyl silane and its conversion into a silicate species. A procedure for the generation of methyl silane and its use in further efficient reductions of aldehydes and ketones has been developed. The protocol was extended to the selective reduction of esters and tertiary amides into alcohols and aldimines into amines with good isolated yields and reduction of heterocyclic compounds was attempted.
Resumo:
Kinetics and product studies of the decompositions of allyl-t-butyl peroxide and 3-hydroperoxy- l-propene (allyl hydroperoxide ) in tolune were investigated. Decompositions of allyl-t-butyl peroxide in toluene at 130-1600 followed first order kinetics with an activation energy of 32.8 K.cals/mol and a log A factor of 13.65. The rates of decomposition were lowered in presence of the radical trap~methyl styrene. By the radical trap method, the induced decomposition at 1300 is shown to be 12.5%. From the yield of 4-phenyl-l,2- epoxy butane the major path of induced decomposition is shown to be via an addition mechanism. On the other hand, di-t-butYl peroxyoxalate induced decomposition of this peroxide at 600 proceeded by an abstraction mechanism. Induced decomposition of peroxides and hydroperoxides containing the allyl system is proposed to occur mainly through an addition mechanism at these higher temperatures. Allyl hydroperoxide in toluene at 165-1850 decomposes following 3/2 order kinetics with an Ea of 30.2 K.cals per mole and log A of 10.6. Enormous production of radicals through chain branching may explain these relatively low values of E and log A. The complexity of the reaction is indicated a by the formation of various products of the decomposition. A study of the radical attack of the hydro peroxide at lower temperatures is suggested as a further work to throw more light on the nature of decomposition of this hydroperoxide.