4 resultados para 060300 EVOLUTIONARY BIOLOGY

em Brock University, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early in his landmark ecocritical book The Comedy of Survival, Joseph Meeker develops an intriguing hypothesis about human behaviour. He remarks the species Homo sapiens tend to behave like an invasive or pioneering organism, entering a bio-geographical region and aggressively outcompeting all other species for space and resources. Moreover, he suggests, human cultural traditions, at least in the West, have reinforced such behaviour, continually insisting that the impulses he describes are both necessary and right. While Meeker's work goes on to assess a number of literary works in both the tragic and comic modes, his work never fully explores this hypothesis in the context of human pioneers; that is, there is no ~xploration o( how these themes manifest themselves within our culture and what role they might play in the culture of specific pioneering groups. This project is an attempt at just such an analysis, examining the validity of Meeker's hypothesis through a case study of settler literature in Upper Canada/Ontario between the . years 1800-1867. It explores Meeker's work within three main areas: first, Chapter Two situates his book historically within the field of ecocriticism, showing what came before and the explosion of ecocritical inquiry that followed its release. This chapter also delves into the rift between the natural sciences and humanities, arguing that a move towards deeper interdisciplinarity is r:tecessary for the future. Chapter Three examines the biological and ecological ground on which Meeker rests his hypothesis through exploring evolutionary biology as well as invasive and pioneer species behaviour. Lastly, Chapter Four examines how these ecological principles are manifested in the writings of early Canadian settlers, suggesting that Meeker's hypothesis indeed finds itself on stable footing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seven crayfish species from three genera of the subfamily Cambarinae were electrophoretically examined for genetic variation at a total of twenty-six loci. Polymorphism was detected primarily at three loci: Ao-2, Lap, and Pgi. The average heterozygosities over-all loci for each species were found to be very low when compared to most other invertebrate species that have been examined electrophoretically. With the exception of Cambarus bartoni, the interpopulation genetic identities are high within any given species. The average interspecific identities are somewhat lower and the average intergeneric identities are lower still. Populations, species and genera conform to the expected taxonomic progression. The two samples of ~ bartoni show high genetic similarity at only 50 percent of the loci compared. Locus by locus identity comparisons among species yield U-shaped distributions of genetic identities. Construction of a phylogenetic dendrogram using species mean genetic distances values shows that species grouping is in agreement with morphological taxonomy with the exception of the high similarity between Orconectespropinquus and Procambarus pictus. This high similarity suggests the possibility of a regulatory change between the two species. It appears that the low heterozygosities, high interpopulation genetic identities, and taxonomic mispositioning can all be explained on the basis of low mutation rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A feature-based fitness function is applied in a genetic programming system to synthesize stochastic gene regulatory network models whose behaviour is defined by a time course of protein expression levels. Typically, when targeting time series data, the fitness function is based on a sum-of-errors involving the values of the fluctuating signal. While this approach is successful in many instances, its performance can deteriorate in the presence of noise. This thesis explores a fitness measure determined from a set of statistical features characterizing the time series' sequence of values, rather than the actual values themselves. Through a series of experiments involving symbolic regression with added noise and gene regulatory network models based on the stochastic 'if-calculus, it is shown to successfully target oscillating and non-oscillating signals. This practical and versatile fitness function offers an alternate approach, worthy of consideration for use in algorithms that evaluate noisy or stochastic behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many arthropods exhibit behaviours precursory to social life, including adult longevity, parental care, nest loyalty and mutual tolerance, yet there are few examples of social behaviour in this phylum. The small carpenter bees, genus Ceratina, provide important insights into the early stages of sociality. I described the biology and social behaviour of five facultatively social species which exhibit all of the preadaptations for successful group living, yet present ecological and behavioural characteristics that seemingly disfavour frequent colony formation. These species are socially polymorphic with both / solitary and social nests collected in sympatry. Social colonies consist of two adult females, one contributing both foraging and reproductive effort and the second which remains at the nest as a passive guard. Cooperative nesting provides no overt reproductive benefits over solitary nesting, although brood survival tends to be greater in social colonies. Three main theories explain cooperation among conspecifics: mutual benefit, kin selection and manipulation. Lifetime reproductive success calculations revealed that mutual benefit does not explain social behaviour in this group as social colonies have lower per capita life time reproductive success than solitary nests. Genetic pedigrees constructed from allozyme data indicate that kin selection might contribute to the maintenance of social nesting -, as social colonies consist of full sisters and thus some indirect fitness benefits are inherently bestowed on subordinate females as a result of remaining to help their dominant sister. These data suggest that the origin of sociality in ceratinines has principal costs and the great ecological success of highly eusociallineages occurred well after social origins. Ecological constraints such as resource limitation, unfavourable weather conditions and parasite pressure have long been considered some of the most important selective pressures for the evolution of sociality. I assessed the fitness consequences of these three ecological factors for reproductive success of solitary and social colonies and found that nest sites were not limiting, and the frequency of social nesting was consistent across brood rearing seasons. Local weather varied between seasons but was not correlated with reproductive success. Severe parasitism resulted in low reproductive success and total nest failure in solitary nests. Social colonies had higher reproductive success and were never extirpated by parasites. I suggest that social nesting represents a form of bet-hedging. The high frequency of solitary nests suggests that this is the optimal strategy when parasite pressure is low. However, social colonies have a selective advantage over solitary nesting females during periods of extreme parasite pressure. Finally, the small carpenter bees are recorded from all continents except Antarctica. I constructed the first molecular phylogeny of ceratinine bees based on four gene regions of selected species covering representatives from all continents and ecological regions. Maximum parsimony and Bayesian Inference tree topology and fossil dating support an African origin followed by an Old World invasion and New World radiation. All known Old World ceratinines form social colonies while New World species are largely solitary; thus geography and phylogenetic inertia are likely predictors of social evolution in this genus. This integrative approach not only describes the behaviour of several previously unknown or little-known Ceratina species, bu~ highlights the fact that this is an important, though previously unrecognized, model for studying evolutionary transitions from solitary to social behaviour.