4 resultados para [3 4] cycloaddition
em Brock University, Canada
Resumo:
The work described in this thesis has been divided into seven sections. The first section involves the preparation of N'-acyl-N'-arylN- benzothiohydrazides by the acylation of N'-aryl-N-benzothiohydrazides and is followed by a brief discussion of their possible conformation in solution. The second section deals with the preparation of 1,3,4-thiadiazolium salts by the action of perchloric acid/acetic anhydride on N'-acylN'- aryl-N-benzothiohydrazides and also by the reaction of N'-arylN- benzothiohydrazides with nitriles in an acidic medium. The preparation of 2-methylthio-I,3,4-thiadiazolium methosulfate by methylating the corresponding thione is also described. The third section deals with the reaction of 2-phenyl- and 2-methyl-I,3,4-thiadiazolium salts with alcohols in the presence of base. The stability and spectra of these compounds are discussed. Treatment of the 2-methyl-I,3,4-thiadiazolium salt with base was found to give rise to a dimeric anhydrobase and evidence supporting its structure is given. The anhydrobase could be trapped by a variety of acylating and thioacylating agents before dimerization occurred. In the fourth section, the reaction of N'-acyl-N'-aryl-N-benzothiohydrazides with a variety of acid anhydrides is described. These compounds were found to be identical with those obtained by acylating the anhydrobase. The mass spectral fragmentation of these compounds is described and the anomolous product obtained upon thiobenzoylation of 3-methyl-l-phenyl-pyrazal-5-one is also discussed. The fifth section deals with thioacyl derivatives of the anhydrobase which were prepared by the action of phosphorus pentasulfide upon the oxygen analogues and also obtained as the major product of the reaction of thioacetic acid with compounds related to N'-aryl-N-benzothiohydrazides. The mass spectra and p.m.r. spectra of these compounds are discussed. In the sixth section, the reaction of the 2-methylthio-l,3,4- thiadiazolium salt with active methylene compounds to give acyl and diacyl derivatives of the anhydrobase is described. Some aspects of these compounds are discussed. The seventh section describes the synthesis of ncyanine~' type dyes incorporating the l,3,4-thiadiazole ring and their spectra are briefly discussed.
Resumo:
The work herein has been divided into five sections. In the first section, a new method of converting N-aroyl- hydrazines to hydrazidic halides is described. The second section deals with the products of reaction of hydrazidic halides with thioacetate ion in acetonitrile at room temperature. A number of new acetylthiohydrazides has been isolated together with corresponding hyclrazidic sulphides. Examination of x-ray data for bis-[~ -(2,6- dibromophenylhydrazono) - benZYl] sulphide revealpd the symmetrical structure as the most probable. In the third section, which consists of the three subsections, the synthesis of the 4H-l,3,4 benzothiadiazine ring system has been extended to 4H-l,3,4 benzothiadiazines with substituents in the 5 and 6-positions. Extension of synthesis also involves 4H-l,3,4 benzothiadiazines with mora than one substituent. Nuclear magnetic resonance spectra of 5 and 6 substituted 4H-l,3,4 benzothiadiazines have been ,. recorded. The section ends with a discussion of the mass spectra of some 4H-l.3,4 benzothiadiazines. In the fourth section, which is divided into two sub- -sections, preparation of 7-nitro substituted 4H-l,3,4 benzothiadiazine from N-thiobenzoyl hydrazine and2,4-dinitro -fluorobenzene is found to be satisfactory. Thiohydrazides react with acetic anhydride, in some cases, to give products identical with acetylthiohydrazides obtained from the hydrazidic halides with thioacetate ion at room temperature. In most of the cases thiohydrazides are found to give anomalous products on reaction with acetic anhydride and mechanisms for their formation are discussed. In the fifth section, which forms three subsections, the 4H-l,3,4 benzothiadiazine ring system with a halogen substituent in the 7-position undergoes electrophilic attack preferentially in 5-posi tion. \fuen the 5-posi tion is occupied by a halogen atom, electrophilic substitution occurs at the 7-position of 4H-l,3,4 benzothiadiazine ring system. Substitution at the 4-nitrogen atom in 4H w l,3,4 benzo- -thiadiazine is extremely slow, probably due to delocalisa- -tion of the nitrogen lone pair in the system. Oxidation of 4H-l,3,4 benzothiadiazines occurs at the sulphur atom under relatively mild conditions. t The Appendix deals with the reaction of N-benzoyl-N - -(2,5-dibromophenyl)hydrazine with p-nitrothiophenol~ The proposed p-nitrothiophenoxy - intermediate may undergo benzothiadiazine formation in a proton exchange system.
Resumo:
Two efficient, regio- and stereo controlled synthetic approaches to the synthesis of racemic analogs of pancratistatin have been accomplished and they serve as the model systems for the total synthesis of optically active 7-deoxy-pancratistatin. In the Diels-Alder approach, an efficient [4+2] cycloaddition of 3,4-methylenedioxyco- nitrostyrene with Danishefsky's diene to selectively form an exo-nitro adduct has been developed as the key step in the construction of the C-ring of the target molecule. In the Michael addition approach, the key step was a conjugate addition of an organic zinc-cuprate to the 3,4-methylenedioxy-(B-nitrostyrene, followed by a diastereocontroUed closure to form the cyclohexane C-ring of the target molecule via an intramolecular nitro-aldol cyclization on a neutral alumina surface. A chair-like transition state for such a cyclization has been established and such a chelation controlled transition state can be useful in the prediction of diastereoselectivity in other related 6-exo-trig nitroaldol reactions. Cyclization of the above products fi^om both approaches by using a Bischler-Napieralski type reaction afforded two lycoricidine derivatives 38 and 50 in good yields. The initial results from the above modeling studies as well as the analysis of the synthetic strategy were directed to a chiral pool approach to the total synthesis of optically active 7-deoxy-pancratistatin. Selective monsilylation and iodination of Ltartaric acid provided a chiral precursor for the proposed key Michael transformation. The outlook for the total synthesis of 7-deoxy-pancratistatin by this approach is very promising.A concise synthesis of novel designed, optically pure, Cz-symmetrical disulfonylamide chiral ligands starting from L-tartaric acid has also been achieved. This sequence employs the metallation of indole followed by Sfj2 replacement of a dimesylate as the key step. The activity for this Cz-symmetric chiral disulfonamide ligand in the catalytic enantioselective reaction has been confirmed by nucleophilic addition to benzaldehyde in the disulfonamide-Ti (0-i-Pr)4-diethylzinc system with a 48% yield and a 33% e.e. value. Such a ligand tethered with a suitable metal complex should be also applicable towards the total synthesis of 7-deoxy-pancratistatin.
Resumo:
Bovine adenovirus type 3 (BAV3) is a medium size DNA virus that causes respiratory and gastrointestinal disorders in cattle. The viral genome consists of a 35,000 base pair, linear, double-stranded DNA molecule with inverted terminal repeats and a 55 kilodalton protein covalently linked to each of the 5' ends. In this study, the viral genome was cloned in the form of subgenomic restriction fragments. Five EcoRI internal fragments spanning 3.4 to 89.0 % and two Xb a I internal fragments spanning 35.7 to 82.9 % of the viral genome were cloned into the EcoRI and Xbal sites of the bacterial vector pUC19. To generate overlap between cloned fragments, ten Hi n dIll internal fragments spanning 3.9 to 84.9 and 85.5 to 96% and two BAV3 BamHI internal fragments spanning 59.8 to 84.9% of the viral genome were cloned into the HindllI and BamHI sites of pUC19. The HindlII cloning strategy also resulted in six recombinant plasmids carrying two or more Hi ndII I fragments. These fragments provided valuable information on the linear orientation of the cloned fragments within the viral genome. Cloning of the terminal fragments required the removal of the residual peptides that remain attached to the 5' ends of the genome. This was accomplished by alkaline hydrolysis of the DNA-peptide bond. BamH I restriction fragments of the peptide-free DNA were cloned into pUC19 and resulted in two plasmids carrying the BAV3 Bam HI terminal fragments spanning 0 to 53.9% and 84.9 to 100% of the viral genome.