7 resultados para (ARYLIMIDO)(ARYLOXO)VANADIUM(V) COMPLEXES

em Brock University, Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to investigate the use of Fast Atom Bombardment Mass Spectrometry (FAB-MS) as a tool for structural characterization, two groups of complexes are analyzed. The first group is a set of ruthenium(II) coordination complexes containing bidentate polypyridyl ligands. The positive and negative ion FAB-MS spectra are found to be sufficient to allow for an almost complete characterization of the central metal atom, the ligands and the counter anions contained in the intact complex. An unusual observation of mUltiply charged ions in the positive ion FAB-MS spectra (i.e. [RUL 3 ]2+) is explained to be as a result of the oxidative quenching of the excited state of the doubly charged ion by the matrix, 3-nitrobenzyl alcohol. An analysis of a mixture shows that the technique is a good one for identifying components therein. A group of triptycene and related complexes containing Group V elements is also analyzed by FAB-MS and the results. in terms of relative abundances of fragment ions, are found to be consistent with known metal-carbon bond strengths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The far infrared reflectance of Sb2Te3 , Sbi.97Vo.o3Te3 and Sbi.94Cr .o6Te3 was measured near normal incidence at different temperatures (between 45K and 300K). The direct current resistivities of the above samples were also measured between the temperatures of 4K and 300K. Also Kramers Kronig (KK) analyses were performed on the reflectance spectra to obtain the optical conductivities. In the doped samples, it was observed that a phonon at 62cm-1 softens to about 55cm-1 on decreasing the temperature from 295K to 45K. Also, it was observed that the plasma frequency of the doped samples is independent of doping. The scattering rate for the vanadium doped sample was seen to be greater than that for the chromium doped sample despite the fact that vanadium impurity density is less than that of chromium. The Drude-Lorentz model fits to the KK optical conductivity show that the samples used in this work are conventional metals. Definitive measurements of the temperature dependence of the scattering rate across the ferromagnetic transition await equipment changes allowing measurements at low temperature using the mercury cadmium telluride (MCT) detector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general solution behaviour and" the major fragmentation pathways of the anticanceractive PtIV coordination complexes, trans, trans, cis, cis-[PtCIOH{N(pFC6F4) CH2h(pY)2] (1), trans, cis, cis-[Pt(OH)2{N(p-FC6F4)CH2h(Py)2] (2), trans, cis, cis-[Pt(OH)2{N(p-HC6F4)CH2h(Py)2] (3), trans, trans, cis, cis-[PtCIOH{N(pHC6F4) CH2h(Py)2] (4), and trans, trans, cis, cis-[PtOH(OCH3){N(p-HC6F4)CH2h(PY)2] (5) (Py = pyridine) have been deduced by positive-ion tandem-in-time ESI-MS. Overall, the acquired full-scan, positive-ion ESI-MS spectra of 2, 3, and 5 were characterized by the presence of relatively low-intensity [M+Nar and [M+Kt mass spectral peaks, whereas those of 1 and 4 were dominated by extremely intense [M+Hr peaks. Complexes 2 and 3 were also noted to form [2M+Ht and [2M+Nat dilneric cations. The source of Na + and K+ ions is believed to be the sample, the solvent systems used or the transport line carrying the sample solutions into the ES ion source. Further, the fragmentation pathway of all complexes studied was found to be almost identical with concurrent loss of py and H20 molecules, loss of a {N(p-YC6F4)CH2} (Y = F, H) group and/or concomitant release of the latter group and a py ligand being the most conunon. The photochemical degradation behaviour of 1 and 2 was also investigated using either fluorescent or ultraviolet light and some products of that degradation were positively identified. Altogether, light irradiation of solutions of both complexes resulted in cation cationisation, reductive-elimination, ligand-release, ligand-exchange and ligand-addition reactions. Finally, positive- and negative-ion ESI-MSn spectra of 5' -GMP, guanosine, inosine and products of their reactions with 1, 2,3, and 4 were also recorded. On the whole, full-scan ESI-MS spectra of the pure nucleobases revealed the presence of cationic and anionic species that are highly reflective of both their solution ionic composition and their propensity t9 form polymeric clusters. Analyses of mass spectra acquired from their reaction solutions with the aforementioned platinum complexes indicated very slow kinetics. However, all complexes investigated formed, to various degrees, Pt-nucleobase adducts with guanosine and inosine, but not with 5'-GMP. The products included species having coordination numbers of III, IV, V, and VI, among which the first-time· observed, coordinatively saturated, jive-coordinate PtlI-nucleobase complexes were of most interest. The latter complexes are presumably stabilized by 7tback- donation involving the filled d orbitals of the PtII centre and the empty pz· orbital of MeCN. All products, whose peaks appeared inlull-scan ESI-MS spectra, are believed to represent solution species rather than artifacts of gas-phase processes. Finally, negativeion ESI-MSn spectra recorded in reaction solutions of 1 and 4 with guanosine and of the latter complex with inosine revealed the negative-ion-ESI-MS first-time observed, noncovalent, nucleoside-chloride adducts, with the source of chloride anion being complexes 1 and 4 theillselves. In contrast, no such adducts were observed to form with Na25'-GMP or its protonated fonn. Few suggestions are offered for the possible cause(s) behind the absence of such adduct ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the synthesis, structural studies, stoichiometric and catalytic reactivity of novel Mo(IV) imido hydride complexes (Cp)(ArN)Mo(H)(PMe3) (1) and (Tp )(ArN)Mo(H)(PMe3) (2). Both 1 and 2 catalyze hydrosilylation of a variety of carbonyls. Detailed kinetic and DFT studies found that 1 reacts by an unexpected associative mechanism, which does not involve Si-H addition either to the imido group or the metal. Despite 1 being a d2 complex, its reaction with PhSiH3 proceeds via a a-bond metathesis mechanism giving the silyl derivative (Cp )(ArN)Mo(SiH2Ph)(PMe3). In the presence of BPh3 reaction of 1 with PhSiH3 results in formation of (Cp)(ArN)Mo(SiH2Ph)(H)2 and (Cp)(ArN)Mo(SiH2Ph)2(H), the first examples ofMo(VI) silyl hydrides. AI: 1 : 1 reaction between 2, PhSiD3 and carbonyl substrate established that hydrosilylation is not accompanied by deuterium incorporation into the hydride position of the catalyst, thus ruling out the conventional mechanism based on carbonyl insertion carbonyl. As 2 is nomeactive to both the silane and ketone, the only mechanistic alternative we are left with is that the metal center activates the carbonyl as a Lewis acid. The analogous nonhydride mechanism was observed for the catalysis by (ArN)Mo(H)(CI)(PMe3), (Ph3P)2(I)(O)Re(H)(OSiMe2Ph) and (PPh3CuH)6. Complex 2 also catalyzes hydroboration of carbonyls and nitriles. We report the first case of metal-catalyzed hydroboration of nitriles as well as hydroboration of carbonyls at very mild conditions. Conversion of carbonyl functions can be performed with high selectivities in the presence of nitrile groups. This thesis also reports the first case of the HlH exchange between H2 and Si-H of silanes mediated by Lewis acids such as Mo(IV) , Re(V) , Cu(I) , Zn(II) complexes, B(C6Fs)3 and BPh3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis describes syntheses, structural studies, and catalytic reactivity of new non-classical silane complexes of ruthenium and iron. The ruthenium complexes CpRu(PPri3)CI(T]2-HSiR3) (1) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were prepared by reactions of the new unsaturated complex CpRu(PPri3)CI with silanes. According to NMR studies and X-ray analyses, the complexes la-c exhibit unusual simultaneous Si··· H and Si··· CI-Ru interactions. The complex CpRu(PPri3)CI was also used for the preparation of the first examples of late transition metal agostic silylamido complexes CpRu(PPri3)(N(T]2-HSiMe2)R) (2) (R= Ar or But), which were characterized by NMR spectroscopy. The iron complexes CpFe(PMePri2)H2(SiR3) (3) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were synthesized by the reaction of the new borohydride iron complex CpFe(PMePri2)(B~) with silanes in the presence NEt3. The complexes 3 exhibit unprecedented two simultaneous and equivalent Si··· H interactions, which was confirmed by X-ray analyses and DFT calculations. A series of cationic ruthenium complexes [CpRu(PR3)(CH3CN)(112-HSiR'3)]BAF (PR3 = PPri 3 (4), PPh3 (5); SiR'3 = SiCh (a), SiClzMe (b), SiClMe2 (c), SiH2Ph (d), SiMe2Ph (e» was obtained by substitution of one of the labile acetonitrile ligands in [CpRu(PR3)(CH3CNh]BAF with sHanes. Analogous complexes [TpRu(PR3)(CH3CN)(T]2 -HSiR' 3)]BAF (5) were obtained by the reaction of TpRu(PR3)(CH3CN)CI with LiBAF in the presence of silanes. The complexes 4-5 were characterized by NMR spectroscopy, and the observed coupling constants J(Si-H) allowed us to estimate the extent of Si-H bond activation in these compounds. The catalytic activity in hydrosilylation reactions of all of the above complexes was examined. The most promising results were achieved with the cationic ruthenium precatalyst [CpRu(PPri3)(CH3CN)2t (6). Complex 6 shows good to excellent catalytic activity in the hydrosilylation of carbonyls, dehydrogenative coupling of silanes with alcohols, amines, acids, and reduction of acid chlorides. We also discovered very selective reduction of nitriles and pyridines into the corresponding N-silyl imines and l,4-dihydropyridines, respectively, at room temperature with the possibility of catalyst recycling. These chemoselective catalytic methods have no analogues in the literature. The reactions were proposed to proceed via an ionic mechanism with intermediate formation of the silane a-complexes 4.