38 resultados para Reimbursement of Shares


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certificate for 100 preference shares in The Tait Storage Battery Company, Limited to the estate of Hamilton K. Woodruff, March 2, 1934.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certificate for 600 common shares in James A. Forrest and Company Distillers Limited – 600 common shares to the estate of Hamilton K Woodruff, Jan. 31, 1936.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Letter to S.D. Woodruff from G. H. Richards of Boston regarding Louis Cabot who sent a letter regarding Mr. Woodruff’s shares in Long Point and asked Mr. Richards to send $1000 on account of them, Mar. 26, 1883.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Letter to S.D. Woodruff from Louis Cabot of Brookline, Massachusetts asking if shares are transferable by lease, Jan. 3, 1884.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telegram from Great North Western Telegraph Company of Canada to S.D. Woodruff from L. Cabot stating that he will take the shares, Jan. 16, 1886.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Letter to S.D. Woodruff from E. Harris, president of the Long Point Company in which he suggests that the principal provisions of the bill regarding shares in the Long Point Company be brought before the Ontario House (2 pages, handwritten), Jan. 15, 1887

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human Class I phosphatidylinositol transfer proteins (PITPs) exists in two forms: PITPα and PITPβ. PITPs are believed to be lipid transfer proteins based on their capacity to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments in vitro. In Drosophila, the PITP domain is found to be part of a multi-domain protein named retinal degeneration B (RdgBα). The PITP domain of RdgBα shares 40 % sequence identity with PITPα and has been shown to possess PI and PC binding and transfer activity. The detailed molecular mechanism of ligand transfer by the human PITPs and the Drosophila PITP domain remains to be fully established. Here, we investigated the membrane interactions of these proteins using dual polarization interferometry (DPI). DPI is a technique that measures protein binding affinity to a flat immobilized lipid bilayer. In addition, we also measured how quickly these proteins transfer their ligands to lipid vesicles using a fluorescence resonance energy transfer (FRET)-based assay. DPI investigations suggest that PITPβ had a two-fold higher affinity for membranes compared to PITPα. This was reflected by a four-fold faster ligand transfer rate for PITPβ in comparison to PITPα as determined by the FRET assay. Interestingly, DPI analysis also demonstrated that PI-bound human PITPs have lower membrane affinity compared to PC-bound PITPs. In addition, the FRET studies demonstrated the significance of membrane curvature in the ligand transfer rate of PITPs. The ligand transfer rate was higher when the accepting vesicles were highly curved. Furthermore, when the accepting vesicles contained phosphatidic acid (PA) which have smaller head groups, the transfer rate increased. In contrast, when the accepting vesicles contained phosphoinositides which have larger head groups, the transfer rate was diminished. However, PI, the favorite ligand of PITPs, or the presence of anionic lipids did not appear to influence the ligand transfer rate of PITPs. Both DPI and FRET examinations revealed that the PITP domain of RdgBα was able to bind to membranes. However, the RdgBα PITP domain appears to be a poor binder and transporter of PC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Letter to William Dickson of Galt from the cashier of the Bank of Upper Canada, Toronto, Ontario. This letter informs Mr. Dickson that he has received a bonus on his shares of the Old Stock on the Bank of Upper Canada due to an act that was passed by legislature (3 pages, printed), Jan. 6, 1855.