75 resultados para Lake Victoria
Resumo:
The McElroy and Larder Lake assemblages, located in the southern Abitibi Greenstone Belt are two late Archean metavolcanic sequences having markedly contrasting physical characteristics arid are separated from one another by a regional fault. An assemblage is an informal term which describes stratified volcanic and/or sedimentary rock units built during a specific time period in a similar depositional or volcanic setting and are commonly bounded by faults, unconformities or intrusions. The petrology and petrogenesis of these assemblages have been investigated to determine if a genetic link exists between the two adjacent assemblages. The McElroy assemblage is homoclinal sequence of evolved massive and pillowed fl.ows, which except for the basal unit represents a progressively fractionated volcanic pile. From the base to the top of the assemblage the lithologies include Fe-tholeiitic, dendritic flows; komatiite basaltic, ultramafic flows; Mg-tholeiitic, leucogabbro; Mg-tholeiitic, massive flows and Fe-tholeiitic, pillowed flows. Massive flows range from coarse grained to aphanitic and are commonly plagioclase glomerophyric. The Larder Lake assemblage consists of komatiitic, Mg-rich and Fe-rich tholeiitic basalts, structurally disrupted by folds and faults. Tholeiitic rocks in the Larder Lake assemblage range from aphanitic to coarse grained massive and pillowed flows. Komatiitic flows contain both spinifex and massive textures. Geochemical variability within both assemblages is attributed to different petrogenetic histories. The lithologies of the McElroy assemblage were derived by partial melting of a primitive mantle source followed by various degrees of crystal fractionation. Partial melting of a primitive mantle source generated the ultramafic flows and possibly other flows in the assemblage. Fractionation of ultramafic flows may have also produced the more evolved McElroy lithologies. The highly evolved, basal, dendritic flow may represent the upper unit 3 of a missing volcanic pile in which continued magmatism generated the remaining McElroy lithologies. Alternatively, the dendritic flows may represent a primary lava derived from a low degree (10-15%) partial melt of a primitive mantle source which was followed by continued partial melting to generate the ultramafic flows. The Larder Lake lithologies were derived by partial melting of a komatiitic source followed by gabbroic fractionation. The tectonic environment for both assemblages is interpreted to be an oceanic arc setting. The McElroy assemblage lavas were generated in a mature back arc setting whereas the Larder Lake lithologies were produced during the early stages of komatiitc crust subduction. This setting is consistent with previous models involving plate tectonic processes for the generation of other metavolcanic assemblages in the Abitibi Greenstone Belt.
Resumo:
The steeply dipping, isoclinally folded early Precambrian (Archean) Berry Creek Metavolcanic Complex comprises primary to resedimented pyroclastic, epiclastic and autoclastic deposits. Tephra erupted from central volcanic edifices was dumped by mass flow mechanisms into peripheral volcanosedimentary depressions. Sedimentation has been essentially contemporaneous with eruption and transport of tephra. The monolithic to heterolithic tuffaceous horizons are interpreted as subaerial to subaqueous pumice and ash flows, secondary debris flows, lahars, slump deposits and turbidites. Monolithic debris flows, derived from crumble breccia and dcme talus, formed during downslope collapse and subsequent gravity flowage. Heterolithic tuff, lahars and lava flow morphologies suggest at least temporary emergence of the edifice. Local collapse may have accompanied pyroclastic volcanism. The tephra, produced by hydromagmatic to magmatic eruptions, were rapidly transported, by primary and secondary mechanisms, to a shallow littoral to deep water subaqueous fan developed upon the subjacent mafic metavolcanic platform. Deposition resulted from traction, traction carpet, and suspension sedimentation from laminar to turbulent flows. Facies mapping revealed proximal (channel to overbank) to distal facies epiclastics (greywackes, argillite) intercalated with proximal vent to medial fan facies crystal rich ash flows, debris flows, bedded tuff and shallow water to deep water lava flows. Framework and matrix support debris flows exhibit a variety of subaqueous sedimentary structures, e.g., coarse tail grading, double grading, inverse to normal grading, graded stratified pebbly horizons, erosional channels. Pelitic to psammitic AE turbidites also contain primary stru~tures, e.g., flames, load casts, dewatering pipes. Despite low to intermediate pressure greenschist to amphibolite grade metamorphism and variably penetrative deformation, relicts of pumice fragments and shards were recognized as recrystallized quartzofeldspathic pseudomorphs. The mafic to felsic metavolcanics and metasediments contain blasts of hornblende, actinolite, garnet, pistacitic epidote, staurolite, albitic plagioclase, and rarely andalusite and cordierite. The mafic metavolcanics (Adams River Bay, Black River, Kenu Lake, Lobstick Bay, Snake Bay) display _holeiitic trends with komatiitic affinities. Chemical variations are consistent with high level fractionation of olivine, plagioclase, amphibole, and later magnetite from a parental komatiite. The intermediate to felsic (64-74% Si02) metavolcanics generally exhibit calc-alkaline trends. The compositional discontinuity, defined by major and trace element diversity, can be explained by a mechanism involving two different magma sources. Application of fractionation series models are inconsistent with the observed data. The tholeiitic basalts and basaltic andesites are probably derived by low pressure fractionation of a depleted (high degree of partial melting) mantle source. The depleted (low Y, Zr) calc-alkaline metavolcanics may be produced by partial melting of a geochemically evolved source, e.g., tonalitetrondhjemite, garnet amphibolite or hydrous basalt.
Resumo:
Part I - Fluorinated Compounds A method has been developed for the extraction, concentration, and determination of two unique fluorinated compounds from the sediments of Lake Ontario. These compounds originated from a common industrial landfill, and have been carried to Lake Ontario by the Niagara River. Sediment samples from the Mississauga basin of Lake Ontario have been evaluated for these compounds and a depositional trend was established. The sediments were extracted by accelerated solvent extraction (ASE) and then underwent clean-up, fractionation, solvent exchange, and were concentrated by reduction under nitrogen gas. The concentrated extracts were analyzed by gas chromatography - electron capture negative ionization - mass spectrometry. The depositional profile determined here is reflective of the operation of the landfill and shows that these compounds are still found at concentrations well above background levels. These increased levels have been attributed to physical disturbances of previously deposited contaminated sediments, and probable continued leaching from the dumpsite. Part II - Polycyclic Aromatic Hydrocarbons Gas chromatography/mass spectrometry is the most common method for the determination of polycyclic aromatic hydrocarbons (PAHs) from various matrices. Mass discrimination of high-boiling compounds in gas chromatographic methods is well known. The use of high-boiling injection solvents shows substantial increase in the response of late-eluting peaks. These solvents have an increased efficiently in the transfer of solutes from the injector to the analytical column. The effect of I-butanol, I-pentanol, cyclopentanol, I-hexanol, toluene and n-octane, as injection solvents, was studied. Higher-boiling solvents yield increased response for all PAHs. I -Hexanol is the best solvent, in terms of P AH response, but in this solvent P AHs were more susceptible to chromatographic problems such as peak splitting and tailing. Toluene was found to be the most forgiving solvent in terms of peak symmetry and response. It offered the smallest discrepancies in response, and symmetry over a wide range of initial column temperatures.
Resumo:
John N. Jackson was born and raised in London England. He served in the Royal Navy, acquired a B.A. and a Ph.D, conducted research for a city planning office and lectured at the University of Manchester. He joined Brock University’s faculty in 1965 as a Professor of Applied Geography. Since his retirement in 1991 he has been Professor Emeritus to Brock. Throughout his time in academia Jackson has focused his research on the history of the modern city, both throughout Europe and Canada. Jackson has also completed specific research on the Niagara Peninsula; including industrial geography, recreation along the Lake Erie shore, St. Catharines early history, the Welland Canals, railway development, comparisons across the Niagara River. While living in the Niagara region Jackson has become involved in many community events. He has been the Director for the Bruce Trail Association, President of the Welland Canals Foundation, and been involved in local historical groups throughout the Niagara region.
Resumo:
Lt. Col. John Clark (1787-1862) was born in Kingston, Upper Canada. In 1801 Clark became a private in the 1st regiment of the Lincoln Militia, serving under Ralfe Clench. By June 1812 he was promoted to lieutenant by Maj. Gen. Sir Isaac Brock. During the War of 1812 he served as lieutenant and adjutant for the Lincoln Militia flank company on the Niagara frontier under Col. William Claus, and was present at the surrender of the enemy at the battle of Queenston Heights. By 1838 the Lincoln Militia was being re-organized and Lt. Col John Clark was requested to lead the 5th Regiment, made up of men from both Grantham and Louth townships in Lincoln County. He served in this capacity until his retirement in 1851?. Around this same time Clark bought from William May Jr. a house in Grantham Township. He was to call his home Walnut Dale Farm. John Clark also served as the customs collector for Port Dalhousie, and as a secretary in the Welland Canal Company. One hundred years later efforts by a local heritage group to save John Clark’s home failed, when the house was hit by arsonists. By this time the house had become known as the May-Clark-Seiler House. See RG 195 Anne Taylor Fonds for more information regarding the efforts of the heritage group to save this home. Clark died in 1862 at the age of 79 years and is buried in Victoria Lawn Cemetery. John Clark’s daughter Catherine (mentioned in the diary portion of the papers) was married to William Morgan Eccles.
Resumo:
Three cores from the Kearl Lake Oil Sands area within the Athabasca deposit of northeastern Alberta have been analyzed to understand the thermal history of the McMurray and Clearwater formations of the Lower Cretaceous Mannville Group. The approach involves the integration of vitrinite reflectance (VR), Rock-Eval pyrolysis, fluorescence microscopy, and palynology. Mean VR varies between 0.21 and 0.43% Ro and indicates thermally immature levels equivalent to the rank of lignite to sub-bituminous coal. Although differing lithologies have influenced VR to some extent (i.e., coals and bitumen-rich zones), groundwater influence and oxidation seem not to have measurably altered YR. Rock-Eval analysis points to Type III/IV kerogen, and samples rich in amorphous organic matter (ADM) show little to no fluorescence characteristics, implying a terrestrial source of origin. Palynology reveals the presence of some delicate macerals but lack of fluorescence and abundant ADM suggests some degradation and partial oxidation of the samples.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Port Colborne. Identified structures associated with the Canal include Lighthouse, Pier Light, Old Lock House, Collector's Office, Harbour Master's House, Canal Boundary, Back Ditch, Reserved Back Ditch, Basin, Light-Keeper's House and Ferry Recess. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks and businesses are also identified and include Gordon's Woodyard, Welland Rail Road, Welland Railway Elevator and Proposed Elevator, W.R.R. Flour Shed, Roman Catholic Church, School House, Sandhills, Lake Erie, and the High Water Mark. Streets running parallel to Canal include King St., West St., East St., Queen St., Hamilton St., and the Road Allowance are labelled. Streets running perpendicular to Canal include Kent St., Victoria St., Adelaide St., SugarLoaf St., George St., Alexandrina St., William St., Fort Erie St., Lake Rd., and New Road to Dutch Settlement are also labelled. Property owners and leasers as well as buildings on lots are also idenitified and noted as follows: Adams estate, J. Towhig, J.C. Kerr, Mrs. Hill, S. Cooke, Mrs. Yocum, W.T. Cooke, P. Wintermute, J. Shickluna, William Cooke, J. McChesney, John Beatty, W. Robertson, John Gordon, T. Armstrong, John Harper, George Keefer, Estate of James Black, Thomas Park, N. Higgins, S. Hopkins, and L.G. Cartier. Map of the Village of Port Colborne. Being Lot No. 27 and part of Lot No. 28 in the 1st Con. Township of HUMBERSTONE. Scale 2 Chs. per Inch. land shaded in RED Owned by DEPT. Do. Do. BLUE Sold to the COUNTY of WELLAND
Resumo:
An image within the American Magazine, March 1816 Vol. I, No. 10. Page 369. A View of the Fort and Harbour of Oswego from Lake Ontario. Below the image it reads: "T. H. Wentworth del." Below the title it reads: "Representing the Attack by the British on the 6th of May 1814" Conducted by Horatio Gates Spafford, A.M. F.A.A.
Resumo:
Niagara-on-the-Lake was originally known as Butlersburg, after Colonel John Butler, the commander of Butler's Rangers. This military corps served in British North America until 1784. At that time, the general forces of the British Army in North America were significantly reduced. In 1781, the town received official status. It became known as Newark, then Niagara, and subsequently Niagara-on-the-Lake in order to distinguish itself from Niagara Falls. It is historically significant as the original capital of Upper Canada and is a popular tourist destination.
Resumo:
Crawford Lake, Ontario, provides an ideal natural laboratory to study the response of freshwater dinoflagellates to cultural eutrophication. The anoxic bottom waters that result from meromixis in this small (2.4 ha) but deep (24 m) lake preserve varved sediments that host an exceptional fossil record. These annual layers provide dates for human activity (agriculture and land disturbance) around the lake over the last millennium by both Iroquoian village farmers (ca. A.D. 1268-1486) and Canadian farmers beginning ~A.D. 1883. The well established separate intervals of human activity around Crawford Lake, together with an abundance of available data from other fossil groups, allow us to further investigate the potential use of the cyst of freshwater dinoflagellates in studies of eutrophication. Cyst morphotypes observed have been assigned as Peridinium willei Huitfeldt-Kaas, Peridinium wisconsinense Eddy and Peridinium volzii Lemmermann and Parvodinium inconspicuum (Lemmermann) Carty. The latter two cyst-theca relationships were determined by culturing and by the exceptional preservation of thecae of P. inconspicuum in varves deposited at times of anthropogenic reductions in dissolved oxygen.
Resumo:
The 19th Century Tombstone Database project was funded by the program Federal Summer Youth Employment scheme in the summer of 1982 and led by Dr. David W. Rupp, a Professor at the Classics Department, Brock University. The main goal of the project was to collect information related to various cemeteries in Niagara region and burials that took place from 1790-1890. Data was collected and presented in the form of data summary forms of persons, tombstone sketches, photographs of tombstones, maps, and computer printouts. The materials created as a result of a research completed for the 19th Century Tombstone Database project are important as a number of the tombstones have been damaged or gone missing since the research was finished. Before Dr. Rupp retired from Brock University, he donated project materials to the Brock University Special Collections and Archives.
Resumo:
An inland water voyage on the great lakes and far-famed St. Lawrence and Saguenay Rivers.
Resumo:
Historical sketch of Niagara on the Lake and Niagara Camp.