64 resultados para CHEMOENZYMATIC SYNTHESIS
Resumo:
The preparation of phenacyl and para-phenylphenacyl esters, the reactions of carboxylic acids, phenols, 2-nitropropane and alcohols with alkyl halides in the presence of fluoride anion are described. The reactions are thought to be accelerated by the formation of hydrogen bonds between the fluoride anion and the organic electron acceptor. The fluoride ,carboxylic acids, fluoride-phenols and fluoride-2-nitropropane are better reaction systems than the fluoride-alcohol. The source of the fluoride anion and the choice of solvents are also discussed.
Resumo:
The work described in t his thesis was initiated with the intention of exploring new routes for the synthesis of certain 4, 5-disubstituted phenanthrenes. A series of reactions have been investigated in detail and several 4, 5-disubstituted phenanthrenes have been prepared. Some of the methods employed were novel and the yields of products were comparable or even better than the existing routes . A major observation made during the course of this work was the stability of the seven-membered ring system bridging the 4 and 5 positions of the phenanthrene nucleus . It has been found t hat the unbridged structures are not preferred if the compound is capable of isomerising to a bridged form . We have explained this phenomenon in t erms of the stereochemistry of t he 4 and 5 positions of the phenanthrene nucleus as well as the geometry of the bridge . Low temperature NMR studies have been carried out to investigate the conformations of the benzylic hydrogens of some of the 4,5-bridged compounds. However, the results were not conclusive as more than one reason could be attributed t o the observations .
Resumo:
The work herein has been divided into five sections. In the first section, a new method of converting N-aroyl- hydrazines to hydrazidic halides is described. The second section deals with the products of reaction of hydrazidic halides with thioacetate ion in acetonitrile at room temperature. A number of new acetylthiohydrazides has been isolated together with corresponding hyclrazidic sulphides. Examination of x-ray data for bis-[~ -(2,6- dibromophenylhydrazono) - benZYl] sulphide revealpd the symmetrical structure as the most probable. In the third section, which consists of the three subsections, the synthesis of the 4H-l,3,4 benzothiadiazine ring system has been extended to 4H-l,3,4 benzothiadiazines with substituents in the 5 and 6-positions. Extension of synthesis also involves 4H-l,3,4 benzothiadiazines with mora than one substituent. Nuclear magnetic resonance spectra of 5 and 6 substituted 4H-l,3,4 benzothiadiazines have been ,. recorded. The section ends with a discussion of the mass spectra of some 4H-l.3,4 benzothiadiazines. In the fourth section, which is divided into two sub- -sections, preparation of 7-nitro substituted 4H-l,3,4 benzothiadiazine from N-thiobenzoyl hydrazine and2,4-dinitro -fluorobenzene is found to be satisfactory. Thiohydrazides react with acetic anhydride, in some cases, to give products identical with acetylthiohydrazides obtained from the hydrazidic halides with thioacetate ion at room temperature. In most of the cases thiohydrazides are found to give anomalous products on reaction with acetic anhydride and mechanisms for their formation are discussed. In the fifth section, which forms three subsections, the 4H-l,3,4 benzothiadiazine ring system with a halogen substituent in the 7-position undergoes electrophilic attack preferentially in 5-posi tion. \fuen the 5-posi tion is occupied by a halogen atom, electrophilic substitution occurs at the 7-position of 4H-l,3,4 benzothiadiazine ring system. Substitution at the 4-nitrogen atom in 4H w l,3,4 benzo- -thiadiazine is extremely slow, probably due to delocalisa- -tion of the nitrogen lone pair in the system. Oxidation of 4H-l,3,4 benzothiadiazines occurs at the sulphur atom under relatively mild conditions. t The Appendix deals with the reaction of N-benzoyl-N - -(2,5-dibromophenyl)hydrazine with p-nitrothiophenol~ The proposed p-nitrothiophenoxy - intermediate may undergo benzothiadiazine formation in a proton exchange system.
Resumo:
2-Carboxy-2?-methyldiphenyl sulfide was prepared by the Ullmann reaction and cyclodehydrated by sulfuric acid to afford 4-methylthioxanthone. 1-Methylthioxanthone was separated from the reaction mixture obtained upon cyclodehydration of 2-carboxy-3f-methyldiphenyl sulfide. In addition, 1-, 2-, 3- and 4-methylthioxanthone 10,10-dioxides were synthesized by oxidation of the corresponding thioxanthones. o-, m- and p-N-Tolylanthranilic acids were prepared by the Ullmann reaction and used as precursors for the preparation of 1-, 2- and 4- methyl-9-chloroacridine and finally 1-, 2-, 3- and 4-methylacridone. High resolution, 60 MHz PMR spectra were obtained on the four monomethyl isomers of xanthone, thioxanthone, thioxanthone 10,10-dioxide and acridone, and on 1-, 2- and 4-methyl-9-chloroacridine. For some compounds, coupling of all three different aromatic protons to the methyl was observed, two of the couplings typically being smaller than the third. With the large (ortho) coupling being on the order of 0.5 to 1.0 Hz, it was necessary to decouple the aromatic part of the spectrum. The magnitude of the ortho benzylic constant may be related to an incomplete Tr-bond delocalization in the molecules.
Resumo:
Nanoporous materials with large surface area and well-ordered pore structure have been synthesized. Thiol groups were grafted on the materials' surface to make heavy metal ion pre-concentration media. The adsorption properties ofthe materials were explored. Mercury, gold and silver can be strongly adsorbed by these materials, even in the presence of alkaline earth metal ion. Though the materials can adsorb other heavy metal ions such as lead and copper, they show differential adsorption ability when several ions are present in solution. The adsorption sequence is: mercury> == silver> copper » lead and cadmium. In the second part of this work, the memory effects of mercury, gold, silver and boron were investigated. The addition of 2% L-cysteine and 1% thiourea eliminates the problems of the three metal ions completely. The wash-out time for mercury dropped from more than 20 minutes to 18 seconds, and the wash-out time for gold decreased from more than 30 minutes to 49 seconds. The memory effect of boron can be reduced by the use of mannitol.
Resumo:
A PGE1 analog, namely (±)-trans-2-(6'-carbomethoxyhexyl)-3- (E-3"-thia-1 "-octene)-4-hydroxycyclopentanone 71, has been prepared for the first time. Towards the synthesis of this compound, several synthetic approaches aimed at the preparation of the required acetylenic and E-halovinylic sulfides as building blocks were investigated. Among all the methods examined, it appeared evident that the best route to ethynyl n.pentyl sulfide 81 is via a double dehydrohalogenation of the corresponding 1,2-dibromoethyl sulfide with sodium amide in liquid ammonia. In addition, the isomerically pure E-2-iodoethenyl n.pentyl sulfide 85 is conveniently prepared in high yield and stereoselectivity by hydrozirconation-iodination of the terminal ethynyl sulfide 81. The classical hydroalumination and hydroboration reactions for the preparation of vinyl halides from alkynes gave only small yields when applied as methods towards the synthesis of 85 . The building block 2-(6'-carbomethoxyhexyl)-4-hydroxy-2- cyclopentenone (±)-1 carrying the upper side-chain of prostaglandin E 1 was prepared by a step-wise synthesis involving transformations of compounds possessing the required carbocyclic framework (see scheme 27). The synthesis proved to be convenient and gave a good overall yield of (±)-1 which was protected as the TH P-derivative 37 or the siloxy derivative 38. With the required building blocks 81 and 37 in hand, the target 1S-thia-PGE1 analog (±)-71 was prepared via the in situ higher cuprate formation-conjugate addition reaction. This method proved to be convenient and stereospecific. The standard cuprate method, involving an organocuprate reagent generated from an isolated vinyl iodide, did not work well in our case and gave a complicated mixture of products. The target compound will be submitted for assessment of bio log ical activity.
Resumo:
(S)-4-Hydroxy-a-lapachone has been prepared for the first time. The commercially available compound 2-acetyl-1-naphthol was used as the starting material. The synthesis involved methylation, followed by Baeyer-Villiger oxidation, and hydrolysis of the acetate to give 1-methoxy-2-naphthol. After protecting of the hydroxyl group, t-BuLi was used to form 3-(3',3'-dimethyl-acryloyl)-1- meth oxy-2- (meth oxymethoxy)-naphthalen e. eycl izationand oxidation then gave 4-keto-a-lapachone. Finally enzymic biotransformation by Mortierella isabellina ATCC 42613 was used to yield the target compound. The enantiomeric excess of the product was determined to be ~98% by using 1H NMR chiral shift analysis. The overall yield is 80/0. The biological activity of (S)-4-hydroxy-alapachone and its acetate are under investigation.
Resumo:
Since its discovery in 1922, vitamin E has been widely investigated for its role as a powerful, chain-breaking antioxidant that is required for human health. However, some basic issues still remain unclear, such as the mechanism and dynamics of the intracellular trafficking of a-tocopherol. To better understand tocopherol's biological activity at the cellular level, fluorescence spectroscopy and microscopy have been found to be valuable tools. This thesis reports the synthesis of a new fluorescent analogue of a-tocopherol, atocohexaenol, an intrinsically fluorescent analogue of a-tocopherol. Different methodologies of preparation have been attempted and a strategy using a preformed chromanol head plus ClO and Cs portion of the polyene side chain finally provided us the desired a-tocohexaenol. a-Tocohexaenol shows a strong fluorescence in both ethanol and hexanes with maximum Aab = 368 nm and maximum /...em = 521 nm. This compound is stable for a couple of weeks in ethanol or hexane solution if stored at 0 °C and protected form light. It decomposes slowly at room temperature and light will accelerate its decomposition (within 5 hours). Thus, a-Tocohexaenol may be a useful fluorescent probe to study the biochemistry and cell biology of vitamin E.
Resumo:
In this study, an efficient methodology for the preparation of carbohydrate-RNA conjugates was established, which involved the use of 3,4~diethoxy-3-cyclobutene-l,2- dione (diethyl squarate) as the linking reagent. First, a glycan moiety containing an amino group reacted with diethyl squarate to form an activated glycan, which further reacted with an amino modified oligoribonucleotide to form a glycoconjugate under slightly basic conditions. The effect of glycosylation on the stability of RNA molecules was evaluated on two glycoconjugates, monomannosyl UlO-mer and dimannosyl UlO-mer. In the synthesis of aromatic fluorescent ribosides, perbenzylated ribofuranosyl pyrene and phenanthrene were synthesized from perbenzylated ribolactone. Deprotection of benzyl-protected ribofuranosyl phenanthrene and pyrene by boron tribromide gave ribofuranosyl phenanthrene and ribopyranosyl pyrene, respectively. UV/vis and fluorescent properties of the ribosides were characterized.
Resumo:
A feature-based fitness function is applied in a genetic programming system to synthesize stochastic gene regulatory network models whose behaviour is defined by a time course of protein expression levels. Typically, when targeting time series data, the fitness function is based on a sum-of-errors involving the values of the fluctuating signal. While this approach is successful in many instances, its performance can deteriorate in the presence of noise. This thesis explores a fitness measure determined from a set of statistical features characterizing the time series' sequence of values, rather than the actual values themselves. Through a series of experiments involving symbolic regression with added noise and gene regulatory network models based on the stochastic 'if-calculus, it is shown to successfully target oscillating and non-oscillating signals. This practical and versatile fitness function offers an alternate approach, worthy of consideration for use in algorithms that evaluate noisy or stochastic behaviour.
Resumo:
Since its discovery nearly a century ago, a-tocopherol (vitamin E) research has been mainly focused on its ability to terminate the cycle of lipid peroxidation in membranes. Nitrobenzoxadiazole fluorescent analogues were made previously to study the intracellular transfer of vitamin E in cells. However, these molecules were reportedly susceptible to photobleaching while under illumination for transfer assays and microscopy. Here is reported the synthesis of a series of fluorescent analogues of vitamin E incorporating the more robust dipyrrometheneboron difluoride fluorophore (BDP-a-Tocs; Aex = 507 nm, Aem = 511 nm). C8-BDP-a-Toc 42c, having an eight-carbon chain between the chromanol and fluorophore, wa<; shown to bind specifically to a-tocopherol transfer protein with a dissociation constant of approximately 100 nM. Another fluorescent analogue of vitamin E with a thienyl derivative of BODIPY that is excited and fluoresces at longer wavelengths (Aex = 561 nm, Aem = 570 nm) is in development.
Resumo:
Compounds containing the pyrrolidine moiety are key substructures of compounds with biological activity and organocatalysts. In particular, annulated chiral pyrrolidines with alpha stereogenic centers have aldostereone synthase inhibition activity. In addition, 5-substituted pyrroloimidazol(in)ium salts precursors to N-heterocyclic carbene (NHC) precatalysts are rare due to a lack of convenient synthetic routes to access them. In this thesis is described a rapid synthesis of NHC precursors and a possible route to 5-substituted pyrroloimidazole biologically active compounds. The method involves the preparation of chiral saturated and achiral unsaturated pyrrolo[I,2- c]imidazol-3-ones from N-Cbz-protected t-Butyl proline carboxamide. The resulting starting materials may be used to prepare the target chiral annulated imidazol(in)ium products by a two-step sequence involving first stereoselective lithiation-substitution, followed by POCh induced salt formation.
Resumo:
(A) Solid phase synthesis of oligonucleotides are well documented and are extensively studied as the demands continue to rise with the development of antisense, anti-gene, RNA interference, and aptamers. Although synthesis of RNA sequences faces many challenges, most notably the choice of the 2' -hydroxy protecting group, modified 2' -O-Cpep protected ribonucleotides were synthesized as alternitive building blocks. Altering phosphitylation procedures to incorporate 3' -N,N-diethyl phosphoramidites enhanced the overall reactivity, thus, increased the coupling efficiency without loss of integrety. Furthermore, technical optimizations of solid phase synthesis cycles were carried out to allow for successful synthesis of a homo UIO sequences with a stepwise coupling efficiency reaching 99% and a final yield of 91 %. (B) Over the past few decades, dipyrrometheneboron difluoride (BODIPY) has gained recognition as one of the most versatile fluorophores. Currently, BODIPY labeling of oligonucleotides are carried out post-synthetically and to date, there lacks a method that allows for direct incorporation of BODIPY into oligonucleotides during solid phase synthesis. Therefore, synthesis of BODIPY derived phosphoramidites will provide an alternative method in obtaining fluorescently labelled oligonucleotides. A method for the synthesis and incorporation of the BODIPY analogues into oligonucleotides by phosphoramidite chemistry-based solid phase DNA synthesis is reported here. Using this approach, BODIPY-labeled TlO homopolymer and ISIS 5132 were successfully synthesized.
Resumo:
This thesis explored the development of several methodologies for the stereoselective construction of ligand frameworks and some of their applications. The first segment concerns the application of an enantioselective lithiation at an Sp3_ hybridized position adjacent to nitrogen by means of the widely used and typically highly effective enantioselective lithiation with ( -)-sparteine. This investigation was intended to develop a method to install chirality into a system that would be converted into a family of diaminoylidenes for use as phosphine mimics in transition metal catalysis or as nucleophilic reagents. Molecular modeling of the system revealed some key interactions between the substrate and (-)-sparteine that provided general insight into the diamine's mode of action and should lend some predictive value to its future applications. The second portion focuses on the development of methods to access 1,2- disubstituted aminoferrocenes, an underexplored class of metallocenes possessing planar chirality. Two routes were examined involving a diastereoselective and an enantioselective pathway, where the latter method made use of the first BF3-mediated lithiation-substitution to install planar chirality. Key derivatives such as 1,2- aminophosphines, made readily accessible by the new route, were evaluated as ligands for Pd(II), Pt(II) and Ir(I). These complexes show activity in a number of transformations with both achiral and prochiral substrates. Optimization experiments were conducted to prepare enantiomerically enriched 2-substituted-I-aminoferrocenes by direct asymmetric lithiation of BF3-coordinated tertiary aminoferrocenes. A predictive computational model describing the transition state of this reaction was developed in collaboration with Professor Travis Dudding's group (Department of Chemistry, Brock University). The predicted stereochemistry of the process was confirmed by single-crystal X-ray analysis of a 2-phosphino-l-dimethylaminoferrocene derivative. Enantiomerically pure samples of the aminophosphine ligands derived from this new process have given promising preliminary results in the enantioselective hydrogenation of prochiral alkenes and warrant further stUdy in metal-mediated catalysis.
Resumo:
The present thesis describes syntheses, structural studies, and catalytic reactivity of new non-classical silane complexes of ruthenium and iron. The ruthenium complexes CpRu(PPri3)CI(T]2-HSiR3) (1) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were prepared by reactions of the new unsaturated complex CpRu(PPri3)CI with silanes. According to NMR studies and X-ray analyses, the complexes la-c exhibit unusual simultaneous Si··· H and Si··· CI-Ru interactions. The complex CpRu(PPri3)CI was also used for the preparation of the first examples of late transition metal agostic silylamido complexes CpRu(PPri3)(N(T]2-HSiMe2)R) (2) (R= Ar or But), which were characterized by NMR spectroscopy. The iron complexes CpFe(PMePri2)H2(SiR3) (3) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were synthesized by the reaction of the new borohydride iron complex CpFe(PMePri2)(B~) with silanes in the presence NEt3. The complexes 3 exhibit unprecedented two simultaneous and equivalent Si··· H interactions, which was confirmed by X-ray analyses and DFT calculations. A series of cationic ruthenium complexes [CpRu(PR3)(CH3CN)(112-HSiR'3)]BAF (PR3 = PPri 3 (4), PPh3 (5); SiR'3 = SiCh (a), SiClzMe (b), SiClMe2 (c), SiH2Ph (d), SiMe2Ph (e» was obtained by substitution of one of the labile acetonitrile ligands in [CpRu(PR3)(CH3CNh]BAF with sHanes. Analogous complexes [TpRu(PR3)(CH3CN)(T]2 -HSiR' 3)]BAF (5) were obtained by the reaction of TpRu(PR3)(CH3CN)CI with LiBAF in the presence of silanes. The complexes 4-5 were characterized by NMR spectroscopy, and the observed coupling constants J(Si-H) allowed us to estimate the extent of Si-H bond activation in these compounds. The catalytic activity in hydrosilylation reactions of all of the above complexes was examined. The most promising results were achieved with the cationic ruthenium precatalyst [CpRu(PPri3)(CH3CN)2t (6). Complex 6 shows good to excellent catalytic activity in the hydrosilylation of carbonyls, dehydrogenative coupling of silanes with alcohols, amines, acids, and reduction of acid chlorides. We also discovered very selective reduction of nitriles and pyridines into the corresponding N-silyl imines and l,4-dihydropyridines, respectively, at room temperature with the possibility of catalyst recycling. These chemoselective catalytic methods have no analogues in the literature. The reactions were proposed to proceed via an ionic mechanism with intermediate formation of the silane a-complexes 4.