17 resultados para recurrence spectra
Resumo:
The aim of this study was to describe the nonlinear association between body mass index (BMI) and breast cancer outcomes and to determine whether BMI improves prediction of outcomes. A cohort of906 breast cancer patients diagnosed at Henry Ford Health System, Detroit (1985-1990) were studied. The median follow-up was 10 years. Multivariate logistic regression was used to model breast cancer recurrence/progression and breast cancer-specific death. Restricted cubic splines were used to model nonlinear effects. Receiver operator characteristic areas under the curves (ROC AUC) were used to evaluate prediction. BMI was nonlinearly associated with recurrence/progression and death (p= 0.0230 and 0.0101). Probability of outcomes increased with increase or decrease ofBMI away from 25. BMI splines were suggestive of improved prediction of death. The ROC AUCs for nested models with and without BMI were 0.8424 and 0.8331 (p= 0.08). I f causally associated, modifying patients BMI towards 25 may improve outcomes.
Resumo:
Volume(density)-independent pair-potentials cannot describe metallic cohesion adequately as the presence of the free electron gas renders the total energy strongly dependent on the electron density. The embedded atom method (EAM) addresses this issue by replacing part of the total energy with an explicitly density-dependent term called the embedding function. Finnis and Sinclair proposed a model where the embedding function is taken to be proportional to the square root of the electron density. Models of this type are known as Finnis-Sinclair many body potentials. In this work we study a particular parametrization of the Finnis-Sinclair type potential, called the "Sutton-Chen" model, and a later version, called the "Quantum Sutton-Chen" model, to study the phonon spectra and the temperature variation thermodynamic properties of fcc metals. Both models give poor results for thermal expansion, which can be traced to rapid softening of transverse phonon frequencies with increasing lattice parameter. We identify the power law decay of the electron density with distance assumed by the model as the main cause of this behaviour and show that an exponentially decaying form of charge density improves the results significantly. Results for Sutton-Chen and our improved version of Sutton-Chen models are compared for four fcc metals: Cu, Ag, Au and Pt. The calculated properties are the phonon spectra, thermal expansion coefficient, isobaric heat capacity, adiabatic and isothermal bulk moduli, atomic root-mean-square displacement and Gr\"{u}neisen parameter. For the sake of comparison we have also considered two other models where the distance-dependence of the charge density is an exponential multiplied by polynomials. None of these models exhibits the instability against thermal expansion (premature melting) as shown by the Sutton-Chen model. We also present results obtained via pure pair potential models, in order to identify advantages and disadvantages of methods used to obtain the parameters of these potentials.