21 resultados para coded character set
Resumo:
Employing critical pedagogy and transformative theory as a theoretical framework, I examined a learning process associated with building capacity in community-based organizations (CBOs) through an investigation of the Institutional Capacity Building Program (ICBP) initiated by a Foundation. The study sought to: (a) examine the importance of institutional capacity building for individual and community development; (b) investigate elements of a process associated with a program and characteristics of a learning process for building capacity in CBOs; and (c) analyze the Foundation’s approach to synthesizing, systematizing, and sharing learning. The study used a narrative research design that included 3 one-on-one, hour-long interviews with 2 women having unique vantage points in ICBP: one is a program facilitator working at the Foundation and the other runs a CBO supported by the Foundation. The interviews’ semistructured questions allowed interviewees to share stories regarding their experience with the learning process of ICB and enabled themes to emerge from their day-to-day experience. Through the analysis of this learning process for institutional capacity building, a few lessons can be drawn from the experience of the Foundation.
Resumo:
This research study explored a support system for children with learning disabilities. The Learning Disabilities Association of Niagara Region (LDANR) recently expanded its Better Emotional and Social Times (B.E.S.T.) program to incorporate an innovative, character education initiative called the “Who is NOBODY?” program. The objective of this qualitative case study was two-fold. First, the study aimed to support the LDANR in assessing the efficacy of the “Who is NOBODY?” program, providing the LDANR with empirical support for their programs. Second, the study enabled a more in-depth understanding of how to best support children with LD in regards to their social and emotional well-being. The study explored the “Who is NOBODY?” program through three lenses: design, implementation, and experiences of participating children. Three primary themes emerged from these three data lenses: positive character traits, prosocial behaviour, and strong self-efficacy – leading to the promotion of strong character development and self-esteem. Taken together, the “Who is NOBODY?” program was shown to be a successful remediation program for supporting vulnerable children with LD.
Resumo:
This lexical decision study with eye tracking of Japanese two-kanji-character words investigated the order in which a whole two-character word and its morphographic constituents are activated in the course of lexical access, the relative contributions of the left and the right characters in lexical decision, the depth to which semantic radicals are processed, and how nonlinguistic factors affect lexical processes. Mixed-effects regression analyses of response times and subgaze durations (i.e., first-pass fixation time spent on each of the two characters) revealed joint contributions of morphographic units at all levels of the linguistic structure with the magnitude and the direction of the lexical effects modulated by readers’ locus of attention in a left-to-right preferred processing path. During the early time frame, character effects were larger in magnitude and more robust than radical and whole-word effects, regardless of the font size and the type of nonwords. Extending previous radical-based and character-based models, we propose a task/decision-sensitive character-driven processing model with a level-skipping assumption: Connections from the feature level bypass the lower radical level and link up directly to the higher character level.
Resumo:
Feature selection plays an important role in knowledge discovery and data mining nowadays. In traditional rough set theory, feature selection using reduct - the minimal discerning set of attributes - is an important area. Nevertheless, the original definition of a reduct is restrictive, so in one of the previous research it was proposed to take into account not only the horizontal reduction of information by feature selection, but also a vertical reduction considering suitable subsets of the original set of objects. Following the work mentioned above, a new approach to generate bireducts using a multi--objective genetic algorithm was proposed. Although the genetic algorithms were used to calculate reduct in some previous works, we did not find any work where genetic algorithms were adopted to calculate bireducts. Compared to the works done before in this area, the proposed method has less randomness in generating bireducts. The genetic algorithm system estimated a quality of each bireduct by values of two objective functions as evolution progresses, so consequently a set of bireducts with optimized values of these objectives was obtained. Different fitness evaluation methods and genetic operators, such as crossover and mutation, were applied and the prediction accuracies were compared. Five datasets were used to test the proposed method and two datasets were used to perform a comparison study. Statistical analysis using the one-way ANOVA test was performed to determine the significant difference between the results. The experiment showed that the proposed method was able to reduce the number of bireducts necessary in order to receive a good prediction accuracy. Also, the influence of different genetic operators and fitness evaluation strategies on the prediction accuracy was analyzed. It was shown that the prediction accuracies of the proposed method are comparable with the best results in machine learning literature, and some of them outperformed it.
Resumo:
List (11 pages, handwritten) of remarks upon the titles as set forth in the abstracts, n.d.