17 resultados para Very young children
Resumo:
Adults code faces in reference to category-specific norms that represent the different face categories encountered in the environment (e.g., race, age). Reliance on such norm-based coding appears to aid recognition, but few studies have examined the development of separable prototypes and the way in which experience influences the refinement of the coding dimensions associated with different face categories. The present dissertation was thus designed to investigate the organization and refinement of face space and the role of experience in shaping sensitivity to its underlying dimensions. In Study 1, I demonstrated that face space is organized with regard to norms that reflect face categories that are both visually and socially distinct. These results provide an indication of the types of category-specific prototypes that can conceivably exist in face space. Study 2 was designed to investigate whether children rely on category-specific prototypes and the extent to which experience facilitates the development of separable norms. I demonstrated that unlike adults and older children, 5-year-olds rely on a relatively undifferentiated face space, even for categories with which they receive ample experience. These results suggest that the dimensions of face space undergo significant refinement throughout childhood; 5 years of experience with a face category is not sufficient to facilitate the development of separable norms. In Studies 3 through 5, I examined how early and continuous exposure to young adult faces may optimize the face processing system for the dimensions of young relative to older adult faces. In Study 3, I found evidence for a young adult bias in attentional allocation among young and older adults. However, whereas young adults showed an own-age recognition advantage, older adults exhibited comparable recognition for young and older faces. These results suggest that despite the significant experience that older adults have with older faces, the early and continuous exposure they received with young faces continues to influence their recognition, perhaps because face space is optimized for young faces. In Studies 4 and 5, I examined whether sensitivity to deviations from the norm is superior for young relative to older adult faces. I used normality/attractiveness judgments as a measure of this sensitivity; to examine whether biases were specific to norm-based coding, I asked participants to discriminate between the same faces. Both young and older adults were more accurate when tested with young relative to older faces—but only when judging normality. Like adults, 3- and 7-year-olds were more accurate in judging the attractiveness of young faces; however, unlike adults, this bias extended to the discrimination task. Thus by 3 years of age children are more sensitive to differences among young relative to older faces, suggesting that young children's perceptual system is more finely tuned for young than older adult faces. Collectively, the results of this dissertation help elucidate the development of category-specific norms and clarify the role of experience in shaping sensitivity to the dimensions of face space.
Resumo:
Based on the theoretical framework of Dressler and Dziubalska-Kołaczyk (2006a,b), the Strong Morphonotactic Hypothesis will be tested. It assumes that phonotactics helps in decomposition of words into morphemes: if a certain sequence occurs only or only by default over a morpheme boundary and is thus a prototypical morphonotactic sequence, it should be processed faster and more accurately than a purely phonotactic sequence. Studies on typical and atypical first language acquisition in English, Lithuanian and Polish have shown significant differences between the acquisition of morphonotactic and phonotactic consonant clusters: Morphonotactic clusters are acquired earlier and faster by typically developing children, but are more problematic for children with Specific Language Impairment. However, results on acquisition are less clear for German. The focus of this contribution is whether and how German-speaking adults differentiate between morphonotactic and phonotactic consonant clusters and vowel-consonant sequences in visual word recognition. It investigates whether sub-lexical letter sequences are found faster when the target sequence is separated from the word stem by a morphological boundary than when it is a part of a morphological root. An additional factor that is addressed concerns the position of the target cluster in the word. Due to the bathtub effect, sequences in peripheral positions in a word are more salient and thus facilitate processing more than word-internal positions. Moreover, for adults the primacy effect most favors word-initial position (whereas for young children the recency effect most favors word- final position). Our study discusses effects of phonotactic vs. morphonotactic cluster status and of position within the word.