27 resultados para Properties of clays
Resumo:
Temperature dependent resistivity, p, magnetic susceptibility, X, and far-infrared reflectance measurements were made on the low Tc superconductor UBe13. Two variants of UBe13 have been proposed, named 'L'- (for low Tc ) and 'H'-type (for high Tc ). Low temperature resistivity measurements confirmed that our sample was of H-type and that the transition temperature was at 0.9 K. This was further confirmed with the observation of this transition in the AC-susceptibility. Low temperature reflectance measurements showed a decrease in the reflectivity as the temperature is lowered from 300 to 10 K, which is in qualitative agreement with the increasing resistivity in this temperature range as temperature is lowered. No dramatic change in the reflectivity was observed between 10 and 0.75 K. A further decrease of the reflectance was observed for the temperature of 0.5 K. The calculated optical conductivity shows a broad minimum near 80 cm-1 below 45 K. Above 45 K the conductivity is relatively featureless. As the temperature is lowered, the optical conductivity decreases. The frequency dependent scattering rate was found to be flat for temperatures between 300 and 45 K. The development of a peak, at around 70 cm-1 was found for temperatures of 45 K and below. This peak has been associated with the energy at which the transition to a coherent state occurs from single impurity scattering in other heavy fermion systems. The frequency dependent mass enhancement coefficient was found to increase at low frequencies as the frequency decreases. Its' magnitude as frequency approaches zero also increased as the temperature decreased.
Resumo:
The successful development of stable biosensors incorporating entrapped proteins suffers from poor understanding of the properties of the entrapped biomolecules. This thesis reports on the use of fluorescence spectroscopy to investigate the properties of proteins entrapped in sol-gel processed silicate materials. Two different single tryptophan (Trp) proteins were investigated in this thesis, the Ca2 + binding protein cod III parvalbumin (C3P) and the salicylate binding protein human serum albumin (HSA). Furthermore, the reactive single cysteine (Cys) residue within C3P and HSA were labelled with the probes iodoacetoxynitrobenzoxadiazole (C3P) and acrylodan (C3P and HSA) to further examine the structure, stability and function of the free and entrapped proteins. The results show that both C3P and HSA can be successfully entrapped into sol-gelderived matrices with retention of function and conformational flexibility.
Resumo:
The Bi2Sr2CaCu20g single crystal with a superconducting transition temperature equal to 90 ± 2 K was prepared. The irreversibility line of the single crystal for a mgnetic field direction along the c-axis and T* in the ab-plane was determined. The reduced temperature (l - T ) is proportional to H 1.1 for fields below 004 T and proportional to HO.09 for fields above 0.4 T. The zero temperature upper critical field Hc2(0) and coherence length ~ (0) were determined from the magnetization meaurements to be H-lC2=35.9T , H//C2=31.2T, ~c(0)=35.0 A, and ~ab(0)=32.5A,and from the magnetoresistance measurements to be H-lc2 = 134.6T , H//C2=55.5T '~c(0)=38.1 A, and ~ab(0)=2404 A for both directions of the applied magnetic field. The results obtained for Hc2(0) and ~(O) are not reliable due to the rounding that the single crystal exhibits in the magnetization and magnetoresistance curves. The magnetization relaxation of the single crystal was investigated, and was found to be logarithmic in time, and the relaxation rate increases with temperature up to 50 -60 K, then decreases at higher temperatures.
Resumo:
A system comprised of a Bomem interferometer and a LT3-110 Heli-Tran cryostat was set up to measure the reflectance of materials in the mid-infrared spectral region. Several tests were conducted to ensure the consistency and reliability of the system. Silicon and Chromium, two materials with well known optical properties were measured to test the accuracy of the system, and the results were found to be in good agreement with the literature. Reflectance measurements on pure SnTe and several Pb and Mn-doped alloys were carried out. These materials were chosen because they exhibit a strong plasma edge in the mid infrared region. The optical conductivity and several related optical parameters were calculated from the measured reflectance. Very low temperature measurements were carried out in the far-infrared on Sn9SMn2Te, and the results are indicative of a spin glass phase at 0.8 K. Resistivity measurements were made at room temperature. The resistivity values were found, as expected, to decrease with increasing carrier concentration and to increase with increasing manganese concentration.
Resumo:
SiC and AtB 12 have been prepared and their resistivities and Hall voltages measured. The resistivities and Hall voltages were measured by the Van der Pauw's method, using spring loaded tungsten contacts. In this method, the major requirement is to have samples of plane parallel surfaces of arbitrary shape with four small contacts at the circumference. Similar measurements were made with a number of SiC crystals obtained from the Norton Research Corporation (Canada)-Ltd., Carolina Aluminum Co., Exolon Co. and Carborundum Co. It was found that resistivity, carrier concentration and mobility of ions depend on the type of impurity. AtB 12 was prepared from the melt containing At and B in the ratio of 4:1. They formed amber-colour pseudo tetragonal crystals. As the crystals obtained were small for electrical measurements, hot pressed lumps have been used to measure their resistivity.
Resumo:
The work herein has been divided into five sections. In the first section, a new method of converting N-aroyl- hydrazines to hydrazidic halides is described. The second section deals with the products of reaction of hydrazidic halides with thioacetate ion in acetonitrile at room temperature. A number of new acetylthiohydrazides has been isolated together with corresponding hyclrazidic sulphides. Examination of x-ray data for bis-[~ -(2,6- dibromophenylhydrazono) - benZYl] sulphide revealpd the symmetrical structure as the most probable. In the third section, which consists of the three subsections, the synthesis of the 4H-l,3,4 benzothiadiazine ring system has been extended to 4H-l,3,4 benzothiadiazines with substituents in the 5 and 6-positions. Extension of synthesis also involves 4H-l,3,4 benzothiadiazines with mora than one substituent. Nuclear magnetic resonance spectra of 5 and 6 substituted 4H-l,3,4 benzothiadiazines have been ,. recorded. The section ends with a discussion of the mass spectra of some 4H-l.3,4 benzothiadiazines. In the fourth section, which is divided into two sub- -sections, preparation of 7-nitro substituted 4H-l,3,4 benzothiadiazine from N-thiobenzoyl hydrazine and2,4-dinitro -fluorobenzene is found to be satisfactory. Thiohydrazides react with acetic anhydride, in some cases, to give products identical with acetylthiohydrazides obtained from the hydrazidic halides with thioacetate ion at room temperature. In most of the cases thiohydrazides are found to give anomalous products on reaction with acetic anhydride and mechanisms for their formation are discussed. In the fifth section, which forms three subsections, the 4H-l,3,4 benzothiadiazine ring system with a halogen substituent in the 7-position undergoes electrophilic attack preferentially in 5-posi tion. \fuen the 5-posi tion is occupied by a halogen atom, electrophilic substitution occurs at the 7-position of 4H-l,3,4 benzothiadiazine ring system. Substitution at the 4-nitrogen atom in 4H w l,3,4 benzo- -thiadiazine is extremely slow, probably due to delocalisa- -tion of the nitrogen lone pair in the system. Oxidation of 4H-l,3,4 benzothiadiazines occurs at the sulphur atom under relatively mild conditions. t The Appendix deals with the reaction of N-benzoyl-N - -(2,5-dibromophenyl)hydrazine with p-nitrothiophenol~ The proposed p-nitrothiophenoxy - intermediate may undergo benzothiadiazine formation in a proton exchange system.
Resumo:
We prepared samples of MgB2 and ran sets of experiments aimed for investigation of superconducting properties under pressure. We found the value of pressure derivative of the transition temperature -1.2 ± 0.05 K/GPa. Then, using McMillan formula, we found that the main contribution to the change of the transition temperature under the pressure is due to the change in phonon frequencies. Griineisen parameter was calculated to be 7g = 2.4. Our results suggest that MgB2 is a conventional superconductor.
Resumo:
Single crystals of (Bal - xKx)Fe2As2 were prepared using the Sn flux method. Two heating methods were used to prepare the single crystals: the slow heating and rapid heating methods. It was found that the single crystals grown using the slow heating method were not superconducting due to a significant loss of potassium. When the rapid heating method was used, the single crystals were observed to be superconducting with the desired potassium concentration. The energy dispersive X-ray spectroscopy analysis indicated the presence of multiple phases in the single crystals. Using single crystal X-ray diffraction, the crystal structure of the single crystals was found to be 14/mmm tetragonal at room temperature. The magnetic measurements on the single crystals indicated the presence of multiple phases and magnetic impurities.
Resumo:
Lead chromium oxide is a photoconductive dielectric material tha t has great potential of being used as a room temperature photodetector. In this research, we made ceramic pellets of this compound as well as potassium doped compound Pb2-xKxCr05, where x=O, 0.05, 0.125. We also investigate the properties of the lanthanum doped sample whose chemical formula is Pb1.85Lao.15Cr05' The electronic, magnetic and thermal properties of these materials have been studied. Magnetization measurements of the Pb2Cr05 sample indicate a transition at about 310 K, while for the lanthanum doped sample the transition temperature is at about 295 K indicating a paramagnetic behavior. However, the potassium doped samples are showing the transition from paramagnetic state to diamagnetic state at different temperatures for different amounts of potassium atoms present in the sample. We have studied resistivity as a function of temperature in different gas environments from 300 K to 900 K. The resistivity measurement of the parent sample indicates a conducting to insulating transition at about 300 K and upon increasing the temperature further, above 450 K the sample becomes an ionic conductor. As temperature increases a decrease in resistance is observed in the lanthanum/potassium doped samples. Using Differential Scanning Calorimetry experiment an endothermic peak is observed for the Pb2Cr05 and lanthanum/potassium doped samples at about 285 K.
Resumo:
We report the results of crystal structure, magnetization and resistivity measurements of Bi doped LaVO3. X-ray diffraction (XRD) shows that if doping Bi in the La site is less than ten percent, the crystal structure of La1-xBixVO3 remains unchanged and its symmetry is orthorhombic. However, for higher Bi doping (>10%) composite compounds are found where the XRD patterns are characterized by two phases: LaVO3+V2O3. Energy-dispersive analysis of the x-ray spectroscopy (EDAX) results are used to find a proper atomic percentage of all samples. The temperature dependence of the mass magnetization of pure and single phase doped samples have transition temperatures from paramagnetic to antiferromagnetic region at TN=140 K. This measurement for bi-phasic samples indicates two transition temperatures, at TN=140 K (LaVO3) and TN=170 K (V2O3). The temperature dependence of resistivity reveals semiconducting behavior for all samples. Activation energy values for pure and doped samples are extracted by fitting resistivity versus temperature data in the framework of thermal activation process.
Resumo:
This thesis reports on the optical properties of the dilute magnetic semiconductors, Sb1.97 V 0.03 Te3 and Sb1.94Cr0.06Te3, along with the parent compound Sb2Te3' These materials develop a ferromagnetic state at low temperature with Curie temperatures of 22 K and 16 K respectively. All three samples were oriented such that the electric field vector of the light was perpendicular to the c-axis. The reflectance profile of these samples in the mid-infrared (500 to 3000 cm-1) shows a pronounced plasma edge which retracts with decreasing temperature. The far-infrared region of these samples exhibits a phonon at ~ 60 cm-1 which softens as temperature decreases. Kramers-Kronig analysis and a Drude-Lorentz model were employed to determine the optical constants of the bulk samples. The real part of the optical conductivity is shown to consist of intraband contributions at frequencies below the energy gap (~0.26 eV) and interband contributions at frequencies above the energy gap. The temperature dependence of the scattering rate show that a mix of phonon and impurity scattering are present, while the signature of traditional spin disorder (magnetic) scattering was difficult to confirm.
Resumo:
Volume(density)-independent pair-potentials cannot describe metallic cohesion adequately as the presence of the free electron gas renders the total energy strongly dependent on the electron density. The embedded atom method (EAM) addresses this issue by replacing part of the total energy with an explicitly density-dependent term called the embedding function. Finnis and Sinclair proposed a model where the embedding function is taken to be proportional to the square root of the electron density. Models of this type are known as Finnis-Sinclair many body potentials. In this work we study a particular parametrization of the Finnis-Sinclair type potential, called the "Sutton-Chen" model, and a later version, called the "Quantum Sutton-Chen" model, to study the phonon spectra and the temperature variation thermodynamic properties of fcc metals. Both models give poor results for thermal expansion, which can be traced to rapid softening of transverse phonon frequencies with increasing lattice parameter. We identify the power law decay of the electron density with distance assumed by the model as the main cause of this behaviour and show that an exponentially decaying form of charge density improves the results significantly. Results for Sutton-Chen and our improved version of Sutton-Chen models are compared for four fcc metals: Cu, Ag, Au and Pt. The calculated properties are the phonon spectra, thermal expansion coefficient, isobaric heat capacity, adiabatic and isothermal bulk moduli, atomic root-mean-square displacement and Gr\"{u}neisen parameter. For the sake of comparison we have also considered two other models where the distance-dependence of the charge density is an exponential multiplied by polynomials. None of these models exhibits the instability against thermal expansion (premature melting) as shown by the Sutton-Chen model. We also present results obtained via pure pair potential models, in order to identify advantages and disadvantages of methods used to obtain the parameters of these potentials.