24 resultados para OXIDIZED PHOSPHOLIPIDS
Resumo:
Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids, with various associated mechanical properties, have been shown to influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model systems composed of phospholipids and gramicidin, the physical effects incurred by gramicidin incorporation were measured. The reverse hexagonal (H^) phase composed of dioleoylphosphatidylethanolamine (DOPE) monolayers decreased in lattice dimension with increasing incorporation of gramicidin. This indicated that gramicidin was adding negative curvature to the monolayers. In this system, gramicidin was measured to have an apparent intrinsic radius of curvature (Rop*™") of -7. 1 A. The addition of up to 4 mol% gramicidin in mixtures with DOPE did not result in the monolayers becoming stiffer, as indicated by unaltered bending moduli for each composition. Dioleoylphosphatidylcholine (DOPC) alone forms the lamellar (LJ phase when hydrated, but undergoes a transition into the H^ phase when mixed with gramicidin. The lattice repeat dimension decreases systematically with increased gramicidin content. Again, this indicated that gramicidin was adding negative curvature to the monolayers. At 12 mol% gramicidin in mixtures with DOPC, the apparent radius of intrinsic curvature of gramicidin (Rop*"^) was measured to be -7.4 A. This mixture formed monolayers that were very resistant to bending under osmotic pressure, with a measured bending modulus of 1 15 kT. The measurements made in this study demonstrate that peptides are able to modulate the spontaneous curvature and other mechanical properties of phospholipid assemblies.
Resumo:
One of the main objectives of the mid-Atlantic transect is to improve dating resolution of sequences and unconfonnity surfaces. Dinoflagellate cysts from two Ocean Drilling Program boreholes, the onshore Leg 174AX Ocean View Site and Leg 174A continental shelf Site 1071, are used to provide age estimates for sequences and unconfonnities fonned on the New Jersey continental margin during the Miocene epoch. Despite the occasional lack of dinocysts in barren and oxidized sections, dinocyst biochronology still offers greater age control than that provided by other microfossils in marginal marine environments. An early Miocene to late Miocene chronology based on ages detennined for the two study sites is presented. In addition, .palynofacies are used to unravel the systems tract character of the Miocene sequences and provide insight into the effects of taphonomy and preservation of palynomorphs in marginal marine and shelf environments under different ~ea level conditions. More precise placement of maximum flooding surfaces is possible through the identification of condensed sections and palynofacies shifts can also reveal subaerially exposed sections and surfaces not apparent in seismic or lithological analyses. The problems with the application of the pollen record in the interpretation of Miocene climate are also discussed. Palynomorphs provide evidence for a second-order lowering of sea level during the Miocene, onto which higher order sea level fluctuations are super-imposed. Correlation of sequences and unconfonnities is attempted between onshore boreholes and from the onshore Ocean View borehole to offshore Site 1071.
Resumo:
It has previously been recognized that the major biochemical toxicity induced by sulphide is due to an inhibition of cytochrome ~ oxidase. Inhibition of this enzyme occurs at 30°C and pH 7.4 with a Ki of approximately 0.2 ~M, and a kon of 104 M-1 s-l, under catalytic conditions. However, the equimo1ar mixture of sulphide and the enzyme shows identical catalytic behaviour to that of the native enzyme. This cannot readily be attributed to rapid dissociation of sulphide, as both spectroscopic and plot analysis indicate the koff value is low. The addition of stoichiometric sulphide to the resting oxidized enzyme gives rise to the appearance of a low-spin ferric-type spectrum not identical with that seen on the addition of excess sulphide to the enzyme aerobically. Sulphide added to the enzyme anaerobically gives rise to another low-spin, probably largely ferric, form which upon admission of oxygen is then converted into a 607 nm species closely resembling Compound C. The 607 nm form is probably the precursor of oxyferricytochrome aa3. The addition of successive a1iquots of Na2S solution to the enzyme induces initial uptake of approximately 3 moles of oxygen per mole of the enzyme. Thus, it is concluded that: 1. the initial product of sulphide-cytochrome c oxidase interaction is not an inhibited form of the enzyme, but the low-spin (oxyferri) ~3+~+ species; 2. a subsequent step in which sulphide reduces cytochrome ~ occurs; 3. the final inhibitory step, in which a further molecule of sulphide binds to the cytochrome ~ iron centre in the cytochrome ~2+~+ species, gives the cytochrome a2+~+-H2S form which is a half-reduced fully inhibited species;4. a 607 run form of the enzyme is produced which may be converted into a catalytically active low-spin (oxyferri) state; and therefore 5. liganded sulphide may be able to reduce the cytochrome 33 -Cu centre without securing the prior reduction of the cytochrome a_ haem group or the Cud centre associated with it.
Resumo:
Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.
Resumo:
The synthesis of 3-ethynylthienyl- (2.07), 3-ethynylterthienyl- (2.19) substituted qsal [qsalH = N-(8-quinolyl)salicylaldimine] and 3,3' -diethynyl-2,2' -bithienyl bridging bisqsal (5.06) ligands are described along with the preparation and characterization of eight cationic iron(III) complexes containing these ligands with a selection of counteranions [(2.07) with: SCN- (2.08), PF6- (2.09), and CI04- (2.10); (2.19) with PF6 - (2.20); (5.06) with: cr (5.07), SeN- (5.08), PF6- (5.09), and CI04- (5.10)]. Spin-crossover is observed in the solid state for (2.08) - (2.10) and (5.07) - (5.10), including a ve ry rare S = 5/2 to 3/2 spin-crossover in complex (2.09). The unusal reduction of complex (2.10) produces a high-spin iron(I1) complex (2.12). Six iron(II) complexes that are derived from thienyl analogues of bispicen [bispicen = bis(2-pyridylmethyl)-diamine] [2,5-thienyl substituents = H- (3.11), Phenyl- (3.12), 2- thienyl (3.13) or N-phenyl-2-pyridinalimine ligands [2,5-phenyl substituents = diphenyl (3.23), di(2-thienyl) (3.24), 4-phenyl substituent = 3-thienyl (3.25)] are reported Complexes (3.11), (3.23) and (3.25) display thermal spin-crossover in the solid state and (3.12) remains high-spin at all temperatures. Complex (3.13) rearranges to form an iron(II) complex (3.14) with temperature dependent magnetic properties be s t described as a one-dimensional ferromagnetic chain, with interchain antiferromagnetic interactions and/or ZFS dominant at low temperatures. Magnetic succeptibility and Mossbauer data for complex (3.24) display a temperature dependent mixture of spin isomers. The preparation and characterization of two cobalt(II) complexes containing 3- ethynylthienyl- (4.04) and 3-ethynylterhienyl- (4.06) substituted bipyridine ligands [(4.05): [Co(dbsqh(4.04)]; (4.07): [Co(dbsq)2(4.06)]] [dbsq = 3,5-dbsq=3,5-di-tert-butylI ,2-semiquinonate] are reported. Complexes (4.05) and (4.07) exhibit thermal valence tautomerism in the solid state and in solution. Self assembly of complex (2.10) into polymeric spheres (6.11) afforded the first spincrossover, polydisperse, micro- to nanoscale material of its kind. . Complexes (2.20), (3.24) and (4.07) also form polymers through electrochemical synthesis to produce hybrid metaUopolymer films (6.12), (6.15) and (6.16), respectively. The films have been characterized by EDX, FT-IR and UV-Vis spectroscopy. Variable-temperature magnetic susceptibility measurements demonstrate that spin lability is operative in the polymers and conductivity measurements confirm the electron transport properties. Polymer (6.15) has a persistent oxidized state that shows a significant decrease in electrical resistance.
Resumo:
Chlorhexidine is an effective antiseptic used widely in disinfecting products (hand soap), oral products (mouthwash), and is known to have potential applications in the textile industry. Chlorhexidine has been studied extensively through a biological and biochemical lens, showing evidence that it attacks the semipermeable membrane in bacterial cells. Although extremely lethal to bacterial cells, the present understanding of the exact mode of action of chlorhexidine is incomplete. A biophysical approach has been taken to investigate the potential location of chlorhexidine in the lipid bilayer. Deuterium nuclear magnetic resonance was used to characterize the molecular arrangement of mixed phospholipid/drug formulations. Powder spectra were analyzed using the de-Pake-ing technique, a method capable of extracting both the orientation distribution and the anisotropy distribution functions simultaneously. The results from samples of protonated phospholipids mixed with deuterium-labelled chlorhexidine are compared to those from samples of deuterated phospholipids and protonated chlorhexidine to determine its location in the lipid bilayer. A series of neutron scattering experiments were also conducted to study the biophysical interaction of chlorhexidine with a model phospholipid membrane of DMPC, a common saturated lipid found in bacterial cell membranes. The results found the hexamethylene linker to be located at the depth of the glycerol/phosphate region of the lipid bilayer. As drug concentration was increased in samples, a dramatic decrease in bilayer thickness was observed. Differential scanning calorimetry experiments have revealed a depression of the DMPC bilayer gel-to-lamellar phase transition temperature with an increasing drug concentration. The enthalpy of the transition remained the same for all drug concentrations, indicating a strictly drug/headgroup interaction, thus supporting the proposed location of chlorhexidine. In combination, these results lead to the hypothesis that the drug is folded approximately in half on its hexamethylene linker, with the hydrophobic linker at the depth of the glycerol/phosphate region of the lipid bilayer and the hydrophilic chlorophenyl groups located at the lipid headgroup. This arrangement seems to suggest that the drug molecule acts as a wedge to disrupt the bilayer. In vivo, this should make the cell membrane leaky, which is in agreement with a wide range of bacteriological observations.
Resumo:
The preparation and characterization of two families of building blocks for molecule-based magnetic and conducting materials are described in three projects. In the first project the synthesis and characterization of three bis-imine ligands LI - L3 is reported. Coordination of LI to a series of metal salts afforded the five novel coordination complexes Sn(L4)C4 (I), [Mn(L4)(u-CI)(CI)(EtOH)h (II), [CU(L4)(u-sal) h(CI04)2 (sal = salicylaldehyde anion) (III), [Fe(Ls)2]CI (IV) and [Fe(LI)h(u-O) (V). All complexes have been structurally and magnetically characterized. X-ray diffraction studies revealed that, upon coordination to Lewis acidic metal salts, the imine bonds of LI are susceptible to nucleophilic attack. As a consequence, the coordination complexes (I) - (IV) contain either the cyclised ligand L4 or hydrolysed ligand Ls. In contrast, the dimeric Fe3+ complex (V) comprises two intact ligand LI molecules. In. this complex, the ligand chelates two Fe(III) centres in a bis-bidentate manner through the lone pairs of a phenoxy oxygen and an imine nitrogen atom. Magnetic studies of complexes (II-V) indicate that the dominant interactions between neighbouring metal centres in all of the complexes are antiferromagnetic. In the second project the synthesis and characterization two families of TTF donors, namely the cyano aryl compounds (VI) - (XI) and the his-aryl TTF derivatives (XII) - (XIV) are reported. The crystal structures of compounds (VI), (VII), (IX) and (XII) exhibit regular stacks comprising of neutral donors. The UV -Vis spectra of compounds (VI) - (XIV) present an leT band, indicative of the transfer of electron density from the TTF donors to the aryl acceptor molecules. Chemical oxidation of donors (VI), (VII), (IX) and (XII) with iodine afforded a series of CT salts that where possible have been characterized by single crystal X -ray diffraction. Structural studies showed that the radical cations in these salts are organized in stacks comprising of dimers of oxidized TTF donors. All four salts behave as semiconductors, displaying room temperature conductivities ranging from 1.852 x 10-7 to 9.620 X 10-3 Scm-I. A second series of CT salts were successfully prepared via the technique of electrocrystallization. Following this methodology, single crystals of two CT salts were obtained. The single crystal X-ray structures of both salts are isostructural, displaying stacks formed by trimers of oxidized donors. Variable temperature conductivity measurements carried out on this series of CT salts reveal they also are semiconductors with conductivities ranging from 2.94 x 10-7 to 1.960 X 10-3 S em-I at room temperature. In the third project the synthesis and characterization of a series of MII(hfac)2 coordination complexes of donor ligand (XII) where M2+ = Co2+, Cu2+, Ni2+ and Zn2+ are reported. These complexes crystallize in a head-to-tail arrangement of TTF donor and bipyridine moieties, placing the metal centres and hfac ligands are located outside the stacks. Magnetic studies of the complexes (XV) - (XVIII) indicate that the bulky hfac ligands prevent neighbouring metal centres from assembling in close proximity, and thus they are magnetically isolated.
Resumo:
Glutaredoxins are oxidoreductases capable of reducing protein disulfide bridges and glutathione mixed disulfides through the process of deglutathionylation and glutathionylation. Lately, redox-mediated modifications of functional cysteine residues of TGA1 and TGA8 transcription factors have been postulated. Namely, GRX480 and ROXY1 glutaredoxins have been previously shown to interact with TGA proteins and have been suggested to regulate redox state of these proteins. TGA1, together with TGA2, is involved in systemic acquired resistance (SAR) establishment in the plant Arabidopsis thaliana through PR1 (Pathogenesis related 1) gene activation. They both form an enhanceosome complex with the NPR1 protein (non-expressor of pathogenesis related gene 1) which leads to PR1 transcription. Although TGA1 is capable of activating PR1 transcription, the ability of the TGA1 NPR1 enhanceosome complex to assembly is based on the redox status of TGA1. We identified GRX480 as a glutathionylating enzyme that catalyzes the TGA1 glutathione disulfide transferase reaction with a Km of around 20μM GSSG (oxidized glutathione). Out of four cysteine residues found within TGA1, C172 and C266 were found to be glutathionylated by this enzyme. We also confirmed TGA1 glutathionylation in vivo and showed that this modification takes place while TGA1 is associated with the PR1 promoter enzymatically via GRX480. Furthermore, we show that glutathionylation via GRX480 abolishes TGA1's interaction with NPR1 and consequently prevents the TGA1-NPR1 transcription activation of PR1. When glutathionylated, TGA1 is recruited to the PR1 promoter and acts as a repressor. Therefore, glutathionylation is a mechanism that prevents TGA1 NPR1 interaction, allowing TGA1 to function as a repressor of PR1 transcription. Surprisingly, GRX480 was not able to deglutathionylate proteins demonstrating the irreversible nature of the reaction. Moreover, we demonstrate that other members of CC-class glutaredoxins, namely ROXY1 and ROXY2, can also catalyze protein glutathionylation. The TGA8 protein was previously shown to interact with NPR1 analogs, BOP1 and BOP2 proteins. However, unlike the case of TGA1 NPR1 interaction, here we demonstrate that TGA8-BOP1 interaction is not redox regulated and that TGA8 glutathionylation by ROXY1 and ROXY2 enzymes does not abolish this interaction in vitro. However, TGA8 glutathionylation results in TGA8 oligomer disassembly into smaller complexes and monomers. Our results suggest that CC-Grxs are unable to reduce mixed disulfides, instead they efficiently catalyze the opposite reaction which distinguishes them from traditional glutaredoxins. Therefore, they should not be classified as glutaredoxins but as protein glutathione disulfide transferases.
Resumo:
I present evidence of an antioxidant mechanism for vitamin E that correlates strongly with its physical location in a model lipid bilayer. These data address the overlooked problem of the physical distance between the vitamin's reducing hydrogen and lipid acyl chain radicals. The combined data from neutron diffraction, NMR and UV spectroscopy experiments, all suggest that reduction of reactive oxygen species and lipid radicals occurs specifically at the membrane's hydrophobic-hydrophilic interface. The latter is possible when the acyl chain adopts conformations in which they snorkel to the interface from the hydrocarbon matrix. Moreover, not all model lipids are equal in this regard, as indicated by the small differences in the vitamin's location. The present result is a clear example of the importance of lipid diversity in controlling the dynamic structural properties of biological membranes. Importantly, these results suggest that measurements of alpha-tocopherol oxidation kinetics, and its products, should be revisited by taking into consideration the physical properties of the membrane in which the vitamin resides.