32 resultados para Mitochondrial complexes
Resumo:
Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.
Resumo:
Boron tribalide complexes of 1,1-bis(dimethylamino)ethylene (DME) , t etramethylurea (TMU), tetramethylguanidine (TMG) , and pentamethylguanidine (PMG) and also mixed boron t r ihalide adducts of DME have been investigated by 1H and 19F NMR spectroscopy. Both nitrogen and the C-Q-H carbon of DME are possible donor a toms to boron trihal ides but complexation has been found to occur only at carbon of DME. The initial adduct acts as a Bronsted acid and gives up a proton to free DME in solut ion. A side reaction in the DME-BF, system gives rise to trace amounts of a complex aSSigned as (DME)2BF2+. (DME)2BF2+ is produced in much larger quantities in t he DME-BF3-BC13 and DME-BF,-BBr, systems by reaction of free DME with DME:BF2X (X = Cl, Br). Restricted r otation about the C-N bonds of TMUlBC13 and n1U:BBr3 has been observed at low temperatures. This complements previous work in this system and confirms oxygen donation of TMU to boron trihalides . Restricted rotation at low temperatures also has been observed in DMEboron trihalide systems
Resumo:
N-heterocyclic carbenes (NHCs) have undergone rapid development in recent years. Due to their strong a-electron donation and structural variability properties, NHCs are becoming a major class of ligands in organometallic chemistry. Compared with the other two types of NHCs (imidazolylidenes and imidazolinylidenes), benzimidazolylidenes have not been well represented. Limited synthetic approaches may impede the development ofbenzimidazolylidenes. This thesis is focused on the synthesis of phenanthroline-derived benzimidazolylidene ligands and their metal complexes. A series of benzimidazolylidene-iridium complexes were synthesized and characterized spectroscopically and crystallographic ally. All of the new complexes showed varying degrees of catalytic activity and enantioselectivity toward transfer hydrogenation and asymmetric hydrogenation. The best results were achieved in hydrogenation of methyl-2-acetamidoacrylate, which afforded (-)-(R)-methyl-2-acetamidopropanoate in 97% yield and 81 % ee.
Resumo:
Iridium complexes with bidentate P,N ligands represent a class of catalysts that significantly expand the application range of asymmetric hydrogenation. New substrate classes, for which there have previously been no suitable catalysts, can now be efficiently hydrogenated in high conversion and enantioselectivity. These substrates are often of synthetic importance, thus iridium catalysis represents a significant advance in the field of asymmetric catalysis. Planar chiral ferrocenyl aminophosphine ligands in which both heteroatoms were directly bound to the cyclopentadienyl ring were prepared by BF3-activated lithiationsubstitution in the presence of a chiral diamine in 49-59% yield and 75-85% enantiomeric excess. Some of these ligands were recrystallized to enantiomeric purity via ammonium fluoroborate salt formation of the phosphine sulfide. A crystal structure of one of these compounds was obtained and features an intramolecular hydrogen bond between the nitrogen, hydrogen, and sulfur atoms. Neutralization, followed by desulfurization, provided the free ligands in enantiomeric purity. Iridium complexes with these ligands were formed via reaction with [Ir(COD)Clh followed by anion exchange with NaBArF. These complexes were successfully applied in homogeneous hydrogenation of several prochiral substrates, providing products in up to 92% enantiomeric excess. Variation of the dimethyl amino group to a pyrrolidine group had a negative effect on the selectivity of hydrogenation. Variation of the substituents on phosphorus to bulkier ortho-tolyl groups had a positive effect, while variation to the more electron rich dicyclohexyl phosphine had a negative effect on selectivity.
Resumo:
This thesis describes the synthesis, structural studies, and stoichiometric and catalytic reactivity of novel Mo(IV) imido silylamide (R'N)Mo(R2)(173_RIN-SiR32-H)(PMe3)n (1: Rl = tBu, Ar', Ar; R2 = Cl; R32 = Me2, MePh, MeCl, Ph2, HPh; n = 2; 2: R' = Ar, R2 = SiH2Ph, n = 1) and hydride complexes (ArN)Mo(H)(R)(PMe3)3 (R = Cl (3), SiH2Ph (4». Compounds of type 1 were generated from (R'N)Mo(PMe3)n(L) (5: R' = tBu, Ar', Ar; L = PMe3, r/- C2H4) and chlorohydrosilanes by the imido/silane coupling approach, recently discovered in our group. The mechanism of the reaction of 5 with HSiCh to give (ArN)MoClz(PMe3)3 (8) was studied by VT NMR, which revealed the intermediacy of (ArN)MCh(172 -ArN=SiHCl)(PMe3)z (9). The imido/silyl coupling methodology was transferred to the reactions of 5 with chlorine-free hydrosilanes. This approach allowed for the isolation of a novel ,B-agostic compound (ArN)Mo(SiHzPh)(173 -NAr-SiHPhH)(PMe3) (10). The latter was found to be active in a variety of hydrosilation processes, including the rare monoaddition of PhSiH3 to benzonitrile. Stoichiometric reactions of 11 with unsaturated compounds appear to proceed via the silanimine intermediate (ArN)M(17z-ArN=SiHPh)(PMe3) (12) and, in the case of olefins and nitriles, give products of Si-C coupling, such as (ArN)Mo(R)(173 -NAr-SiHPh-CH=CHR')(PMe3) (13: R = Et, R' = H; 14: R = H, R' = Ph) and (ArN)Mo(172-NAr-SiHPh-CHR=N)(PMe3) (15). Compound 13 was also subjected to catalysis showing much improved activity in the hydrosilation of carbonyls and alkenes. Hydride complexes 3 and 4 were prepared starting from (ArN)MoCh(PMe3)3 (8). Both hydride species catalyze a diversity of hydrosilation processes that proceed via initial substrate activation but not silane addition. The proposed mechanism is supported by stoichiometric reactions of 3 and 4, kinetic NMR studies, and DFf calculations for the hydrosilation of benzaldehyde and acetone mediated by 4.
Resumo:
This thesis describes the synthesis, structural studies, stoichiometric and catalytic reactivity of novel Mo(IV) imido hydride complexes (Cp)(ArN)Mo(H)(PMe3) (1) and (Tp )(ArN)Mo(H)(PMe3) (2). Both 1 and 2 catalyze hydrosilylation of a variety of carbonyls. Detailed kinetic and DFT studies found that 1 reacts by an unexpected associative mechanism, which does not involve Si-H addition either to the imido group or the metal. Despite 1 being a d2 complex, its reaction with PhSiH3 proceeds via a a-bond metathesis mechanism giving the silyl derivative (Cp )(ArN)Mo(SiH2Ph)(PMe3). In the presence of BPh3 reaction of 1 with PhSiH3 results in formation of (Cp)(ArN)Mo(SiH2Ph)(H)2 and (Cp)(ArN)Mo(SiH2Ph)2(H), the first examples ofMo(VI) silyl hydrides. AI: 1 : 1 reaction between 2, PhSiD3 and carbonyl substrate established that hydrosilylation is not accompanied by deuterium incorporation into the hydride position of the catalyst, thus ruling out the conventional mechanism based on carbonyl insertion carbonyl. As 2 is nomeactive to both the silane and ketone, the only mechanistic alternative we are left with is that the metal center activates the carbonyl as a Lewis acid. The analogous nonhydride mechanism was observed for the catalysis by (ArN)Mo(H)(CI)(PMe3), (Ph3P)2(I)(O)Re(H)(OSiMe2Ph) and (PPh3CuH)6. Complex 2 also catalyzes hydroboration of carbonyls and nitriles. We report the first case of metal-catalyzed hydroboration of nitriles as well as hydroboration of carbonyls at very mild conditions. Conversion of carbonyl functions can be performed with high selectivities in the presence of nitrile groups. This thesis also reports the first case of the HlH exchange between H2 and Si-H of silanes mediated by Lewis acids such as Mo(IV) , Re(V) , Cu(I) , Zn(II) complexes, B(C6Fs)3 and BPh3.
Resumo:
The present thesis describes syntheses, structural studies, and catalytic reactivity of new non-classical silane complexes of ruthenium and iron. The ruthenium complexes CpRu(PPri3)CI(T]2-HSiR3) (1) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were prepared by reactions of the new unsaturated complex CpRu(PPri3)CI with silanes. According to NMR studies and X-ray analyses, the complexes la-c exhibit unusual simultaneous Si··· H and Si··· CI-Ru interactions. The complex CpRu(PPri3)CI was also used for the preparation of the first examples of late transition metal agostic silylamido complexes CpRu(PPri3)(N(T]2-HSiMe2)R) (2) (R= Ar or But), which were characterized by NMR spectroscopy. The iron complexes CpFe(PMePri2)H2(SiR3) (3) (SiR3 = SiCh (a), SiClzMe (b), SiCIMe2 (c), SiH2Ph (d), SiMe2Ph (e» were synthesized by the reaction of the new borohydride iron complex CpFe(PMePri2)(B~) with silanes in the presence NEt3. The complexes 3 exhibit unprecedented two simultaneous and equivalent Si··· H interactions, which was confirmed by X-ray analyses and DFT calculations. A series of cationic ruthenium complexes [CpRu(PR3)(CH3CN)(112-HSiR'3)]BAF (PR3 = PPri 3 (4), PPh3 (5); SiR'3 = SiCh (a), SiClzMe (b), SiClMe2 (c), SiH2Ph (d), SiMe2Ph (e» was obtained by substitution of one of the labile acetonitrile ligands in [CpRu(PR3)(CH3CNh]BAF with sHanes. Analogous complexes [TpRu(PR3)(CH3CN)(T]2 -HSiR' 3)]BAF (5) were obtained by the reaction of TpRu(PR3)(CH3CN)CI with LiBAF in the presence of silanes. The complexes 4-5 were characterized by NMR spectroscopy, and the observed coupling constants J(Si-H) allowed us to estimate the extent of Si-H bond activation in these compounds. The catalytic activity in hydrosilylation reactions of all of the above complexes was examined. The most promising results were achieved with the cationic ruthenium precatalyst [CpRu(PPri3)(CH3CN)2t (6). Complex 6 shows good to excellent catalytic activity in the hydrosilylation of carbonyls, dehydrogenative coupling of silanes with alcohols, amines, acids, and reduction of acid chlorides. We also discovered very selective reduction of nitriles and pyridines into the corresponding N-silyl imines and l,4-dihydropyridines, respectively, at room temperature with the possibility of catalyst recycling. These chemoselective catalytic methods have no analogues in the literature. The reactions were proposed to proceed via an ionic mechanism with intermediate formation of the silane a-complexes 4.
Resumo:
Resveratrol, a polyphenol found naturally in red wines, has attracted great interest in both the scientific community and the general public for its reported ability to protect against many of the diseases facing Western society today. While the purported health effects of resveratrol are well characterized, details of the cellular mechanisms that give rise to these observations are unclear. Here, the mitochondrial antioxidant enzyme Mn superoxide dismutase (MnSOD) was identified as a proximal target of resveratrol in vitro and in vivo. MnSOD protein and activity levels increase significantly in cultured cells treated with resveratrol, and in the brain tissue of mice given resveratrol in a high fat diet. Preventing the increase in MnSOD levels eliminates two of resveratrol’s more interesting effects in the context of human health: inhibition of proliferative cell growth and cytoprotection. Thus, the induction of MnSOD is a critical step in the molecular mechanism of resveratrol. Mitochondrial morphology is a malleable property that is capable of impeding cell cycle progression and conferring resistance against stress induced cell death. Using confocal microscopy and a novel ‘cell free’ fusion assay it was determined that concurrent with changes in MnSOD protein levels, resveratrol treatment leads to a more fused mitochondrial reticulum. This observation may be important to resveratrol’s ability to slow proliferative cell growth and confer cytoprotection. Resveratrol's biological activities, including the ability to increase MnSOD levels, are strikingly similar to what is observed with estrogen treatment. Resveratrol fails to increase MnSOD levels, slow proliferative cell growth and confer cytoprotection in the presence of an estrogen receptor antagonist. Resveratrol's effects can be replicated with the specific estrogen receptor beta agonist diarylpropionitrile, and are absent in myoblasts lacking estrogen receptor beta. Four compounds that are structurally similar to resveratrol and seven phytoestrogens predicted to bind to estrogen receptor beta were screened for their effects on MnSOD, proliferative growth rates and stress resistance in cultured mammalian cells. Several of these compounds were able to mimic the effects of resveratrol on MnSOD levels, proliferative cell growth and stress resistance in vitro. Thus, I hypothesize that resveratrol interacts with estrogen receptor beta to induce the upregulation of MnSOD, which in turn affects cell cycle progression and stress resistance. These results have important implications for the understanding of RES’s biological activities and potential applications to human health.
Resumo:
1. Triarylamminium radical-cation complexes. The detailed study of manganese, copper and nickel metal-radical complexes with triarylamminium ligands was conducted. Stable, neutral and pseudo-octahedral coordination monometallic complexes with simple monodentate 2,2`-bipyridine ligand containing a redox-active N,N`-(4,4`-dimethoxydiphenyl-amino) substituent were synthesized and fully characterized. The one-electron oxidation process and formation of persistent radical-cation complexes was observed by cyclic voltammetry and spectroelectrochemical measurements. Evans method measurements were performed with radical-cation complexes generated by chemical one-electron oxidation with NOPF6 in acetonitrile. The experimental results indicate ferromagnetic coupling between metal and triarylamminium cation in manganese (II) complex and antiferromagnetic coupling in nickel (II) complex. This data is supported by DFT calculations which also lend weight to the spin polarization mechanism as an operative model for magnetic exchange coupling. Neutral bimetallic complexes with a new ditopic ligand were synthesized and fully characterized, including magnetic and electrochemical studies. Chemical oxidation of these precursor complexes did not generate radical-cations, but dicationic complexes, which was confirmed by UV-vis and EPR-experiments, as well as varied temperature magnetic measurements. DFT calculations for radical-cation complexes are included. A synthetic pathway for polytopic ligand with multiple redox-active triarylamine sites was developed. The structure of the ligand is presumably suitable for -spin polarization exchange model and allows for production of polymetallic complexes having high spin ground states. 2. Base-catalyzed hydrosilylation. A simple reductive base-catalyzed hydrosilation of aldehydes and ketones was adapted to the use of the cheap, safe, and non-toxic polymethylhydrosiloxane (PMHS) instead of the common PhSiH3 and (EtO)3SiH, which present significant cost and safety concerns, respectively. The conversion of silane into pentacoordinate silicate species upon addition of a base was studied in details for the cases of phenyl silane and PMHS and is believed to be essential for the hydrosilylation process. We discovered that nucleophiles (a base or fluoride-anion) induced the rearrangement of PMHS and TMDS into light silanes: MeSiH3 and Me2SiH2, respectively. The reductive properties of PMHS under basic conditions can be attributed to the formation of methyl silane and its conversion into a silicate species. A procedure for the generation of methyl silane and its use in further efficient reductions of aldehydes and ketones has been developed. The protocol was extended to the selective reduction of esters and tertiary amides into alcohols and aldimines into amines with good isolated yields and reduction of heterocyclic compounds was attempted.
Resumo:
The maximum lifespan (MLSP) of endothermic vertebrates can range from as little as a year to over two centuries, yet the underlying phenotype of aging is very similar amongst this group of organisms. One organelle that may be important in the phenotype of aging is the mitochondrion. When damaged, this organelle is thought to contribute to many of the neurodegenerative diseases of aging. For this thesis, mitochondria from brain tissues of 7 mammalian and 2 avian species were isolated to assess whether the antioxidant glutathione system and major molecular chaperone, HSP60, is correlated to species MLSP. Furthermore, HSP60, and the major endoplasmic reticulum chaperone, GRP78, were measured under basal conditions, and following the introduction of an oxidative stress (hydrogen peroxide) in cultured mammalian myoblasts from 10 different species. My results indicate that the enzymes involved in the glutathione defense system are not correlated to species MLSP in brain mitochondria; however HSP60 levels are indeed higher in the longer-lived species. HSP60 levels are also higher at the basal level in cultured mammalian myoblasts and after 1 hour of hydrogen peroxide exposure. GRP78 induction is not correlated to species MLSP at the basal level or following hydrogen peroxide exposure. Therefore, these results suggest that HSP60 is a correlate of longevity in endothermic vertebrate species, but neither the glutathione antioxidant defense system, nor GRP78, correlates to species longevity.
Resumo:
The syntheses, catalytic reactivity and mechanistic investigations of novel Mo(IV) and Mo(VI) imido systems is presented. Attempts at preparing mixed bis(imido) Mo(IV) complexes of the type (RN)(R′N)Mo(PMe3)n (n = 2 or 3) derived from the mono(imido) complexes (RN)Mo(PMe3)3(X)2 (R = tBu (1) or Ar (2); X = Cl2 or HCl, Ar=2,6-iPr2C6H3) are also described. The addition of lithiated silylamides to 1 or 2 results in the unexpected formation of the C-H activated cyclometallated complexes (RN)Mo(PMe3)2(η2-CH2PMe2)(X) (R = Ar, X = H (3); R = tBu, X = Cl (4)). Complexes 3 and 4 were used in the activation of R′E-H bonds (E = Si, B, C, O, P; R′ = alkyl or aryl), which typically give products of addition across the M-C bond of the type (RN)Mo(PMe3)3(ER′)(X) (4). In the case of 2,6-dimethylphenol, subsequent heating of 4 (R = Ar, R′ = 2,6-Me2C6H3, E = O) to 50 °C results in C-H activation to give the cyclometallated complex (ArN)Mo(PMe3)3(κ2-O,C-OPh(Me)CH2) (5). An alternative approach was developed in synthesizing the mixed imido complex (ArN)(tBuN)Mo(PMe3)(η2-C2H4) (6) through EtMgBr reduction of (ArN)(tBuN)MoCl2(DME) in the presence of PMe3. Complex 6 reacts with various hydro- and chlorosilanes to give β-agostic silylamido complexes and in one case, when Me2SiHCl is the silane, leads to the silanimine complex (tBuN)Mo(η2-SiMe2-NAr)(Et)(η2-C2H4) (7). Mechanistic studies on the formation of the Mo(VI) tris(silyl) complex (tBuN)Mo(SiHPh)(H){(μ-NtBu)(SiHPh)}(PMe3)2 (8) were done from the addition of three equivalents of PhSiH3 to (tBuN)Mo(PMe3)(η2-C2H4), resulting in identification of β- and γ-agostic SiH…Mo intermediates. The reactivity of complex 8 towards ethylene and nitriles was studied. In both cases coupling of unsaturated substrates with the Mo-Si bond of the metalacycle was observed. In the case of nitriles, insertion into the 4-membered disilaazamolybdacycle results in complexes of the type (tBuN)Mo{(κ2-Si,C-SiHPh-NtBu-SiHPh-N=C(R)}(PMe3)2. Catalytic hydrosilylation of carbonyls mediated by the β-agostic silylamido complex (ArN)2Mo(η3-NtBu-SiMe2-H)(H) (9) was investigated. Stoichiometric reactions with organic substrates showed that catalysis with 9 does not proceed via the conventional insertion of substrate into the Mo-H bond.
Resumo:
This thesis describes syntheses and catalytic reactivity of several half-sandwich complexes of ruthenium. The neutral ruthenium trihydride complex, Cp(PPri3)RuH3(1), can efficiently catalyse the H/D exchange reaction between various organic substrates and deuterium sources, such as benzene-d6. Moreover, the H/D exchange reactions of polar substrates were also observed in D2O, which is the most attractive deuterium source due to its low cost and low toxicity. Importantly, the H/D exchange under catalytic conditions was achieved not only in aromatic compounds but also in substituted liphatic compounds. Interestingly, in the case of alkanes and alkyl chains, highly selective deuterium incorporation in the terminal methyl positions was observed. It was discovered that the methylene units are engaged in exchange only if the molecule contains a donating functional group, such as O-and N-donors, C=C double bonds, arenes and CH3. The cationic half-sandwich ruthenium complex [Cp(PPri3)Ru(CH3CN)2]+(2) catalyses the chemoselective mono-addition of HSiMe2Ph to pyridine derivatives to selectively give the 1,4-regiospecific, N-silylated products. An ionic hydrosilylation mechanismis suggested based on the experiments. To support this mechanistic proposal, kinetic studies under catalytic conditions were performed. Also, the 1,4-regioselective mono-hydrosilylation of nitrogen containing compounds such as phenanthroline, quinoline and acridine can be achieved with the related Cp*complex [Cp*(phen)Ru(CH3CN)]+(3) (phen = 1,10-phenanthroline) and HSiMe2Ph under mild conditions. The cationic ruthenium complex 2 can also be used as an efficient catalyst for transfer hydrogenation of various organic substrates including carbonyls, imines, nitriles and esters. Secondary alcohols, amines, N-isopropylidene amines and ether compounds can be obtained in moderate to high yields. In addition, other ruthenium complexes, 1,3 and [Cp*(PPri3)Ru(CH3CN)2]+(4), can catalyse transfer hydrogenation of carbonyls although the reactions were sluggish compared to the ones of 2. The possible intermediate, Cp(PPri3)Ru(CH3CN)(H), was characterized by NMR at low temperature and the kinetic studies for the transfer hydrogenation of acetophenone were performed. Recently, chemoselective reduction of acid chlorides to aldehydes catalysed by the complex 2 was reported. To extend the catalytic reactivity of 2, reduction of iminoyl chlorides, which can be readily obtained from secondary amides, to the corresponding imines and aldehydes was investigated. Various substituted iminoyl chlorides were converted into the imines and aldehydes under mild conditions and several products were isolated with moderate yields.
Resumo:
Surrounding lipid droplets in skeletal muscle are the perilipin (PLIN2-5) family of proteins, regulating lipid droplet metabolism. During exercise lipid droplets provide fatty acids to the mitochondria for oxidation while increasing their proximity to each other. Whether PLIN3 and PLIN5 associate with mitochondria following contraction has not been examined. To determine whether contraction altered mitochondrial PLIN3 and PLIN5 content, sedentary and endurance trained rats underwent acute contraction. The main outcomes are; 1) mitochondrial PLIN3 content is unaltered while mitochondrial PLIN5 content is increased following an acute contraction 2) mitochondrial PLIN3 content is higher in endurance trained rats when compared to sedentary and mitochondrial PLIN5 content is similar in both conditions 3) only PLIN5 mitochondrial content is increased similarly in both groups following acute contraction. This work highlights the dynamics of these two PLIN proteins, which may have roles not only on the lipid droplet but also on the mitochondria.
Resumo:
Experimental Extended X-ray Absorption Fine Structure (EXAFS) spectra carry information about the chemical structure of metal protein complexes. However, pre- dicting the structure of such complexes from EXAFS spectra is not a simple task. Currently methods such as Monte Carlo optimization or simulated annealing are used in structure refinement of EXAFS. These methods have proven somewhat successful in structure refinement but have not been successful in finding the global minima. Multiple population based algorithms, including a genetic algorithm, a restarting ge- netic algorithm, differential evolution, and particle swarm optimization, are studied for their effectiveness in structure refinement of EXAFS. The oxygen-evolving com- plex in S1 is used as a benchmark for comparing the algorithms. These algorithms were successful in finding new atomic structures that produced improved calculated EXAFS spectra over atomic structures previously found.
Resumo:
The initial employment of N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2) as bridging/chelating ligand in metal cluster chemistry has provided access to five new polynuclear NiII complexes with large nuclearities, unprecedented metal core topologies, and interesting magnetic properties. The obtained results are presented in two projects. The first project includes the investigation of the general Ni2+/RCO2-/sacbH2 reaction system (where R- = CH3-, But-, ButCH2-) in which the nature of the carboxylic acid was found to be of crucial importance, affecting enormously the nuclearity of the resulting complexes. The second project deals with the study of the general Ni2+/X-/sacbH2 reaction system (where X- = inorganic anions) under basic conditions, yielding new cluster compounds with molecular chain-like structures and ferromagnetic exchange interactions between the metal centers.