21 resultados para Mathematics. Trigonometric Functions. Geogebra
Resumo:
This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.
Resumo:
Ontario bansho is an emergent mathematics instructional strategy used by teachers working within communities of practice that has been deemed to have a transformational effect on teachers' professional learning of mathematics. This study sought to answer the following question: How does teachers' implementation of Ontario bansho within their communities of practice inform their professional learning process concerning mathematics-for-teaching? Two other key questions also guided the study: What processes support teachers' professional learning of content-for-teaching? What conditions support teachers' professional learning of content-for-teaching? The study followed an interpretive phenomenological approach to collect data using a purposive sampling of teachers as participants. The researcher conducted interviews and followed an interpretive approach to data analysis to investigate how teachers construct meaning and create interpretations through their social interactions. The study developed a model of professional learning made up of 3 processes, informing with resources, engaging with students, and visualizing and schematizing in which the participants engaged and 2 conditions, ownership and community that supported the 3 processes. The 3 processes occur in ways that are complex, recursive, nonpredictable, and contextual. This model provides a framework for facilitators and leaders to plan for effective, content-relevant professional learning by placing teachers, students, and their learning at the heart of professional learning.
Resumo:
This thesis research was a qualitative case study of a single class of Interdisciplinary Studies: Introduction to Engineering taught in a secondary school. The study endeavoured to explore students' experiences in and perceptions of the course, and to investigate the viability of engineering as an interdisciplinary theme at the secondary school level. Data were collected in the form of student questionnaires, the researcher's observations and reflections, and artefacts representative of students' work. Data analysis was performed by coding textual data and classifying text segments into common themes. The themes that emerged from the data were aligned with facets of interdisciplinary study, including making connections, project-based learning, and student engagement and affective outcomes. The findings of the study showed that students were positive about their experiences in the course, and enjoyed its project-driven nature. Content from mathematics, physics, and technological design was easily integrated under the umbrella of engineering. Students felt that the opportunity to develop problem solving and teamwork skills were two of the most important aspects of the course and could be relevant not only for engineering, but for other disciplines or their day-to-day lives after secondary school. The study concluded that engineering education in secondary school can be a worthwhile experience for a variety of students and not just those intending postsecondary study in engineering. This has implications for the inclusion of engineering in the secondary school curriculum and can inform the practice of curriculum planners at the school, school board, and provincial levels. Suggested directions for further research include classroom-based action research in the areas of technological education, engineering education in secondary school, and interdisciplinary education.
Resumo:
This project addressed the need for more insightful, current, and applicable resources for intermediate math teachers in Canadian classrooms. A need for a handbook in this division seemed warranted by a lack of government resource support. Throughout an extensive review of the literature, themes and topics for the handbook emerged. The handbook was designed to not only provide educators with examples of effective teaching strategies within the mathematics classroom but to also inform them about the ways in which their personal characteristics and personality type could affect their students and their own pedagogical practices. Three teaching professionals who had each taught in an intermediate math class within the past year evaluated the handbook. The feedback received from these educators was directly applied to the first draft of the handbook in order to make it more accessible and applicable to other math teachers. Although the handbook was written with teachers in mind, the language and format used throughout the manual also make it accessible to parents, tutors, preservice education students, and educational administrators. Essentially, any individual who is hoping to inspire and educate intermediate math students could make use of the content within the handbook.
Resumo:
(A) Most azobenzene-based photoswitches require UV light for photoisomerization, which limit their applications in biological systems due to possible photodamage. Cyclic azobenzene derivatives, on the other hand, can undergo cis-trans isomerization when exposed to visible light. A shortened synthetic scheme was developed for the preparation of a building block containing cyclic azobenzene and D-threoninol (cAB-Thr). trans-Cyclic azobenzene was found to thermally isomerize back to the cis-form in a temperature-dependent manner. cAB-Thr was transformed into the corresponding phosphoramidite and subsequently incorporated into oligonucleotides by solid phase synthesis. Melting temperature measurement suggested that incorporation of cis-cAB into oligonucleotides destabilizes DNA duplexes, these findings corroborate with circular dichroism measurement. Finally, Fluorescent Energy Resonance Transfer experiments indicated that trans-cAB can be accommodated in DNA duplexes. (B) Inverse Electron Demand Diels-Alder reactions (IEDDA) between trans-olefins and tetrazines provide a powerful alternative to existing ligation chemistries due to its fast reaction rate, bioorthogonality and mutual orthogonality with other click reactions. In this project, an attempt was pursued to synthesize trans-cyclooctene building blocks for oligonucleotide labeling by reacting with BODIPY-tetrazine. Rel-(1R-4E-pR)-cyclooct-4-enol and rel-(1R,8S,9S,4E)-Bicyclo[6.1.0]non-4-ene-9-ylmethanol were synthesized and then transformed into the corresponding propargyl ether. Subsequent Sonogashira reactions between these propargylated compounds with DMT-protected 5-iododeoxyuridine failed to give the desired products. Finally a methodology was pursued for the synthesis of BODIPY-tetrazine conjugates that will be used in future IEDDA reactions with trans-cyclooctene modified oligonucleotides.
Resumo:
This is a study of the implementation and impact of formative assessment strategies on the motivation and self-efficacy of secondary school mathematics students. An explanatory sequential mixed methods design was implemented where quantitative and qualitative data were collected and analyzed sequentially in 2 different phases. The first phase involved quantitative data from student questionnaires and the second phase involved qualitative data from individual student and teacher interviews. The findings of the study suggest that formative assessment is implemented in practice in diverse ways and is a process where the strategies are interconnected. Teachers experience difficulty in incorporating peer and self-assessment and perceive a need for exemplars. Key factors described as influencing implementation include teaching philosophies, interpretation of ministry documents, teachers’ experiences, leadership in administration and department, teacher collaboration, misconceptions of teachers, and student understanding of formative assessment. Findings suggest that overall, formative assessment positively impacts student motivation and self-efficacy, because feedback is provided which offers encouragement and recognition by highlighting the progress that has been made and what steps need to be taken to improve. However, students are impacted differently with some considerations including how students perceive mistakes and if they fear judgement. Additionally, the impact of formative assessment is influenced by the connection between self-efficacy and motivation, namely how well a student is doing is a source of both concepts.