63 resultados para Upper Bounds
Resumo:
Owing to the fact that low-Mg calcite fossil shells are so important in paleoceanographic research, 249 brachiopod, cement and matrix specimens from two neighboring localities (Jemez Springs and Battleship Rock), of the Upper Pennsylvanian Madera Formation were analyzed. Of which, about 86% of the Madera brachiopods are preserved in their pristine mineralogy, microstructure and geochemistry. Cement and matrix samples, in contrast, have been subjected to complete but variable post-deposition~1 alteration. It is confirmed that the stable isotope data of brachiopods are much better than that of matrix material in defining depositional parameters. Because there is no uniform or constant relationship between the two data bases (e.g., from 0.1 to 3.0%0 for 0180 and from 0.2 to 6.7%0 for 013C in this study), it is not possible to make corrections for the matrix data. Regarding the two stratigraphic sections, elemental and petrographic analyses suggest that Jemez Springs is closer to Penasco Uplift than Battleship Rock. Seawater at Jemez Springs is more aerobic, and the water chemistry is more influenced by continental sources than that at Battleship Rock. In addition, there is a relatively stronger dolomitization in the mid-section of the Battleship Rock. Results further suggest that no significant biogenic fractionation or vital effects occurred during their shell secretion, suggesting that the Madera brachiopods incorporated oxygen and carbon isotopes in equilibrium with the ambient seawater. This conclusion is not only drawn from the temporal and spatial analyses, but also supported by brachiopod inter-generic comparison (Composita and Neospirifer) and statistical analysis ( t-test).
Resumo:
During the Upper Cambrian there were three mass extinctions, each of which eliminated at least half of the trilobite families living in North American shelf seas. The Nolichucky Formation preserves the record of one of these extinction events at the base of the Steptoean Stage. Sixty-six trilobite collections were made from five sections In Tennessee and Virginia. The lower Steptoean faunas are assigned to one low diversity, Aphelaspis-dominated biofacies, which can be recognized in several other parts of North America. In Tennessee, the underlying upper Marjuman strata contain two higher diversity biofacies, the Coosella-Glaphyraspis Biofacies and the Tricrepicephalus-Norwoodiid Biofacies. At least four different biofacies are present in other parts of North America: the Crepicephalus -Lonchocephalus Biofacies, the Kingstonia Biofacies, the Cedaria Biofacies, and the Uncaspis Biofacies. A new, species-based zonation for the Nolichucky Formation imcludes five zones, three of which are new. These zones are the Crepicephalus Zone, the Coosella perplexa Zone, the Aphelaspis buttsi Zone, the A. walcotti Zone and the A. tarda Zone. The Nolichucky Formation was deposited within a shallow shelf basin and consists largely of subtidal shales with stormgenerated carbonate interbeds. A relative deepening is recorded In the Nolichucky Formation near the extinction, and is indicated In some sections by the appearance of shale-rich, distal storm deposits above a carbonate-rich, more proximal storm deposit sequence. A comparable deepening-upward sequence occurs near the extinction in the Great Basin of southwestern United States and in central Texas, and this suggests a possible eustatic control. In other parts of North America, the extinction IS recorded In a variety of environmental settings that range from near-shore to slope. In shelf environments, there is a marked decrease in diversity, and a sharp reduction in biofacies differentiation. Although extinctions do take place in slope environments, there IS no net reduction in diversity because of the immigration of several new taxa.
Resumo:
The Upper Cambrian Pika Formation in the southern Canadian Rocky Mountains forms a complete lithologic Grand Cycle. The overall pattern of deposition is one of shallowing upwards from a subtidal, muddy, storm-influenced basin to a shallow carbonate bank. The Pika passes gradationally into the overlying inter- to supratidal siliciclastics of the Arctomys Formation. This transition probably reflects a fall in relative sea level. 2 Twenty seven collections from three sections yielded trilobites. The faunas are assigned to two low-diversity biofacies: the Marjumia - Spencella Biofacies and the GZyphaspis - menomoniid Biofacies. In contrast to biofacies of deeper, open-shelf environments, such as the Wheeler and Marjum formations of Utah, the Pika biofacies lack agnostid trilobites. Consequently, agnostid-based zonations defined elsewhere in North America cannot be applied to the Pika and a new sequence of three zones and one informal fauna is proposed for use in inner shelf facies. Eleven species belonging to six genera are described and illustrated. The species Marjumia bagginsi is new. Other genera present are: Bolaspidella, Knechtelia, GZyphaspis and Spencella, in addition to a number of indeterminate forms
Resumo:
Cover title.
Resumo:
Inscribed on verso of front cover: H.R. Morgan Esq. with compts of E.A. Cruikshank.
Resumo:
Transcribed on front paste-down: W.G. Phelps Oct. 29 1890.
Resumo:
The design of a large and reliable DNA codeword library is a key problem in DNA based computing. DNA codes, namely sets of fixed length edit metric codewords over the alphabet {A, C, G, T}, satisfy certain combinatorial constraints with respect to biological and chemical restrictions of DNA strands. The primary constraints that we consider are the reverse--complement constraint and the fixed GC--content constraint, as well as the basic edit distance constraint between codewords. We focus on exploring the theory underlying DNA codes and discuss several approaches to searching for optimal DNA codes. We use Conway's lexicode algorithm and an exhaustive search algorithm to produce provably optimal DNA codes for codes with small parameter values. And a genetic algorithm is proposed to search for some sub--optimal DNA codes with relatively large parameter values, where we can consider their sizes as reasonable lower bounds of DNA codes. Furthermore, we provide tables of bounds on sizes of DNA codes with length from 1 to 9 and minimum distance from 1 to 9.
Resumo:
Functional Electrically Stimulated (FES) ami cycle ergometry is a relatively new technique for exercise in individuals with impairments of the upper limbs. The purpose of this study was to determine the effects of 12 weeks of FES arm cycle ergometry on upper limb function and cardiovascular fitness in individuals with tetraplegia. F!ve subjects (4M/1F; mean age 43.8 ± 15.4 years) with a spinal cord injury of the cervical spine (C3- C7; ASIA B-D) participated in 12 weeks of3 times per week FES arm cycle ergometry training. Exercise performance measures (time to fatigue, distance to fatigue, work rate) were taken at baseline, 6 weeks, and following 12 weeks of training. Cardiovascular measures (MAP, resting HR, average and peak HR during exercise, cardiovascular efficiency) and self reported upper limb function (as determined by the CUE, sf-QIF, SCI-SET questionnaires) were taken at baseline and following 12 weeks of training. Increases were found in time to fatigue (84.4%), distance to fatigue (111.7%), and work rate (51.3%). These changes were non-significant. There was a significant decrease in MAP (91.1 ± 13.9 vs. 87.7 ± 14.7 mmHg) following 12 weeks ofFES arm cycle ergometry. There was no significant change in resting HR or average and peak HR during exercise. Cardiovascular efficiency showed an increase following the 12 weeks ofFES training (142.9%), which was non-significant. There were no significant changes in the measures of upper limb function and spasticity. Overall, FES arm cycle ergometry is an effective method of cardiovascular exercise for individuals with tetraplegia, as evidenced by a significant decrease in MAP, however it is unclear whether 12 weeks of thrice weekly FES arm cycle ergometry may effectively improve upper limb function in all individuals with a cervical SCI.
Resumo:
In March 1931, Captain Bruce Angus was sent to Sarnia by Gordon C. Leitch, general manager of Toronto Elevators. He was sent to inspect the Sarnian to ensure it was still seaworthy. Leitch was a savvy business man, who had been active in the business community for a number of years. Leitch began his career with a partner in the lumber business. When that went under he moved into graineries and worked for the Winnipeg Wheat Pool for 12 years. After Winnipeg he moved to Toronto, which was closer to his home town of Ridgetown, Ontario. In Toronto Leitch became manager of the Toronto branch of the Canadian Wheat Pool. While managing the wheat pools in Toronto Leitch became aware of huge costs associated with shipping the grains from the praries into the Toronto area. He felt that there was no need for such costs and decided to do something to make them better and cheaper for the business. Originally the grain was loaded onto Lakers that would bring the grain from the praries to Lake Huron and Georgian Bay. It was stored there until needed by the Toronto graineries and then hauled across land by either truck or train. The land journey was the most expensive and the one which Leitch wanted to eliminate. This was a fine plan except for 2 obstacles that were quickly overcome. First of all the Welland canals were not large enough to accommodate the large carriers that were bringing in the grain. This was changing as the expansion and widening of the canals was already underway. The second issue was the lack of storage in Toronto for the grain. The grain elevators had been destroyed by fire in the late 1880s and never replaced. Leitch propsed his company built its own storage elevators along the water front to allow not only for easier access to the grain, and more timely production of products. The elevators would aslo create a reduction in shipping costs and an overall more competitoive price for the customers of the grainery. The company refused, so Leitch went elsewhere to friends and contacts within the grain industry. The elevators were built and Leitch quit his job with the Canadian Wheat Pool and became the general manager of the elevators. Although the elevators were built and ready for storage the next issue was filling them. None of the carriers wanted to do business with Leitch because the competition in Georgian Bay threatened to cancel their contracts if they did. Leitch saw no way around this, but to provide his own transportation. This is when he sent Captain Bruce Angus to scout out potential ships. The ship was purchased for $37,000 and after another $30,000 was spent to fix it up, it was ready for business. The need for transportation and the finding of a seaworthy ship, lead to the beginnings of the Northland Steamship Company. The Sarnian proved to not be enough for the business underway. Leitch decided another ship was necessary. He joined forces with James Norris the owner of the Norris Grain Company. He proposed they join forces to create a more economical means of transportating their products.
Resumo:
The Statutes of his Majesty's Province of Upper Canada in North America outlining the recruitment, administration and discipline of the militia.
Resumo:
Full Title: A geographical view of the province of Upper Canada : and promiscuous remarks on the government, in two parts, with an appendix, containing a complete description of the Niagara Falls, and remarks relative to the situation of the inhabitants respecting the war, and a concise history of its progress, to the present date. William and David Robinson, Printers
Resumo:
Printed at the Niagara Spectator Office
Resumo:
This study examined muscle strength, muscle performance, and neuromuscular function during contractions at different velocities across maturation stages and between sexes. Participants included pre-pubertal, late-pubertal and adult males and females. All completed 8 isometric and 8 isokinetic leg extensions at two different velocities. Peak torque (PT), rate of torque development (PrTD), electromechanical-day (EMD), rate of muscle activation (Q30), muscle activation efficiency and coactivation were determined. Sex, maturity, and velocity main effects were found in PT and PrTD, reflecting greater values in men, adults, and isometric contractions respectively. When values were normalized to quadriceps cross-sectional area (qCSA), there was still an increase with maturity. EMD decreased with maturity. Adults had greater activation efficiency than children. Overall, differences in muscle size and neuromuscular function failed to explain group differences in PT or PrTD. More research is needed to investigate why adults may be affected to a greater extent by increasing movement velocity.