20 resultados para Salmo 82
Resumo:
Back Row: Pat Woodburn (Coach), Rhonda Walcarius, Melanie Brown, Patty Stamps, Lyn Storm, Diane Hilko, Jackie Kuntze, Janice Jockel Front Row: Maureen Kelly, Lena Olszewski, Trudy Montel, Carolyn Foreman, Dawn Dixon, Peggy Stamps
Resumo:
Back Row: Al Pedler (Coach), Murray McEachern, John Popham, David Heyworth, Colin Harris, George Nixon Middle Row: Renee Traver, Wendy Wells Front Row: Maggie Swan, Debbie Belair, Katherine Coy
Resumo:
Back Row: Murray Mc Eachern, John Popham, Colin Harris, David Heyworth, George Nixon, Al Pedler (Coach) Front Row: Maggie Swan, Debbie Belair, Katharine Coy
Resumo:
Back Row: Paul Jackson (Asst. Coach), Paul DeGagne (Manager), Angelo Pontello, Yvan Prevost, Greg Foy, Ken Murray, Steve Ashfield, Rick Berard, Andy MacMillan, Kelly Toppazzini, Carl Van Bolderen, John Dakin, Loran Prentice, Joe Kenny (Trainer), Ron Anderson (Coach) Front Row: Logan Trafford, Mark Warren, Pat Gallagher, Phil Powers, Daryl Clancy, Ted Sawicki, Gord Christie, John Hogg, Brian Onifrichuk, Doug Riopelle, Shawn Barry Absent: Paul Hanley, Brad MacMillan, Rico Schirru, Mike Quinn (Asst. Coach)
Resumo:
Sue Quait receiving the Oarswoman of the Year award from coach John Gleddie
Resumo:
Back Row: J.B. Owens, Ross Smith (Head Coach), Adam Frost, Derrick Harwood, Dave DeRose, Bill Arniel, Danny Mazor, Alan Ross, Randy McKeller, Pete McDougall, Ray D'Archi, Kelvin Oda, Mark Pelletier, Eric Thompson, Marty Houston, Ken White (Asst. Coach) Front Row: Peter Love, Chris Peskett, Duff Porteous, Bart Ward, Dave Sohmer, Gary Gautier, Ken Murray, Dave Tamowski, Steve Shaughnessy, Jeff Wood Absent: Alfred Esmaily, Luc Gignac, Fred Kovacs, Andrew Norman
Resumo:
Back Row: John MacNeil (Coach), John MacNail Jr, John Murray, Joel Walton, Frank Cipriano, Benny Grossi, Rino Berardi, Louis Famelos, Doug Rowan, Ron Di Felice Front Row: Ivan Hunt, Roger Vanoostveen, Dave Gibson, Joe Perri, Kent Mayhew, Jim Baldassarro, Guenther Baur Absent: Neil Dunsmore
Resumo:
Back Row: Maura Purdon (Coach), Kelly Grantham, Liz Jansen, Diane Thiesen, Louise Argenta, Rhonda, Oatman, Kelly Fahlenbock (Asst. Coach) Middle Row: Kaaren Quartermain, Sherri Crossman, Sue Crowley, Kin Zamecnik Front Row: June LeDrew, Darlene Danis Absent: Margo Schijns
Resumo:
From left to right: H. T. Lillies (Coach), Rudolph Ambacher, Bill Hadfield, Michel Thibodeau, Bill Haines, Larry Plummer, Bill Smale, and Kelvin Oda (Manager). Absent: Gordon McNeice, Tom Dagg, Hong Wey Kang, Darrel Murphey, Darren Cannell, Ian Shackel, John Bernie.
Developmental variations in the peripheral erythrocytic system of the rainbow trout, Salmo gairdneri
Resumo:
The peripheral circulating erythrocytic system of the rainbow trout, l3 almo gairdner , was examined in vitro in relation differences in the morphology and multiple hemoglobin system organization of adult and juvenile red cells. Cells were separated by velocity sedimentation under unit gravity, a procedure requiring red cell exposure to an incubation medium for periods of at least three hours. Therefore , this must provide an environment in which red cells remain in a condition approximaing normalcy. Previous studies having demonstrated commonly employed media to be ineffective in this regard , a medium was developed through modification of Cortl and saline. One of the principal additions to this me dium , norepinephrine, altered cell regulation of intracellular calcium, magnesium and chloride concentrations. Catecholamine involvement was also suggeste d in the synthes is of hemoglobin . The procedure was found to separtate cells primarily by density and, to a lesser extent, by shape. Characterization of red cells revealed two subpopulations to exist . The first comprised the bulk of the cell population, and were of greater l ength, width, volume and major:minor axis ratio than the smaller population; these were adult cells. The later, juvenile cells were of smaller overall size and were more spherical in shape . Juvenile cells also possessed fewer electrophore tpically distinguishable isomorphs than did adults with only eight of eleven hemoglobin component s typically found With maturation,hemoglobin complement with the development of three more bands. The total complement of the adult cell contained 7 cathodal bands and four anodal hemoglobin isomorphs. Bands acquired with maturation comprised the smallest percentage of the cells hemoglobin. each averaging less than one-percent of the total. Whether these additional bands are derived through degradation and reaggregation of existing components or are the product of pe gQy2 synthesis is not yet known.
Resumo:
Four groups of rainbow trout, Salmo gairdneri, were acclimated to 2°, 10°, and 18°e, and to a diurnal temperature cycle (100 ± 4°C). To evaluate the influence of cycling temperatures in terms of an immediate as opposed to acclimatory response various ventilatory-cardiovascular rate functions were observed for trout, either acclimated to cycling temperatures or acclimated to constant temperatures and exposed to a diurnal temperature cycle for the first time (10° ± 4°C for trout acclimated to 10°C; 18°+ 4°C for trout acclimated to l8°e). Gill resistance and the cardiac to ventilatory rate ratio were then calculated. Following a post preparatory recovery period of 36 hr, measurements were made over a 48 hour period with the first 24 hours being at constant temperature in the case of statically-acclimated fish followed by 24 hours under cyclic temperature conditions. Trout exhibited marked changes in oxygen consumption (Vo ) with temp- 2 erature both between acclimation groups, and in response to the diurnal temperature cycle. This increase in oxygen uptake appears to have been achieved by adjustment of ventilatory and, to some extent, cardiovascular activity. Trout exhibited significant changes in ventilatory rate (VR), stroke volume (Vsv), and flow (VG) in response to temperature. Marked changes in cardiac rate were also observed. These findings are discussed in relation to their importance in convective oxygen transport via water and blood at the gills and tissues. Trout also exhibited marked changes in pressure waveforms associated with the action of the resp; ratory pumps with temperature. Mean differenti a 1 pressure increased with temperature as did gill resistance and utilization. This data is discussed in relation to its importance in diffusive oxygen transport and the conditions for gas exchange at the gills. With one exception, rainbow trout were able to respond to changes in oxygen demand and availability associated with changes in temperature by means of adjustments in ventilation, and possibly pafusion, and the conditions for gas exchange at the gills. Trout acclimated to 18°C, however, and exposed to high cyclic temperatures, showed signs of the ventilatory and cardiovascular distress problems commonly associated with low circulating levels of oxygen in the blood. It appears these trout were unable to fully meet the oxygen requirements associated with c~ling temperatures above 18°C. These findings were discussed in relation to possible limitations in the cardiovascular-ventilatory response at high temperatures. The response of trout acclimated to cycling temperatures was generally similar to that for trout acclimated to constant temperatures and exposed to cycling temperatures for the first time. This result suggested that both groups of fish may have been acclimated to a similar thermal range, regardless of the acclimation regime employed. Such a phenomenon would allow trout of either acclimation group to respond equally well to the imposed temperature cycle. Rainbow trout showed no evidence of significant diurnal rhythm in any parameters observed at constant temperatures (2°, 10°, and 18° C), and under a 12/12 light-dark photoperiod regime. This was not taken to indicate an absence of circadian rhythms in these trout, but rather a deficiency in the recording methods used in the study.
Resumo:
Interactions of photoperiod and temperature upon waterelectrolyte balance were examined in rainbow trout acclimated to six combinations of two photoperiods {18h light: 6h dark, o 6h light: l8h dark) and three temperatures (2, 10 and 18 C). The influence of temperature and photoperiod upon plasma, skeletal muscle, cardiac muscle and liver levels of sodium, potassium, magnesi.um, calcium, chloride, water content, water distribution and cellular ion concentrations was determined by a one way analysis of variance. Significant (p < 0.05 or better) temperature effects at common photoperiods were observed in 70% of the analyses performed, showing no bias toward either photoperiod. Significant photoperiod effects occured in 57% of the analyses performed at common temperatures. The influence of photoperiod was most prevalent at reduced temperatures. Potassium and magnesium appeared to be particularly thermosensitive, while sodium and calcium were the most photosensitive of the electrolytes. The ionic composition of all tissues studied were relatively thermosensitive, with liver apparently being the most sensitive. On the other hand; the ionic composition of skeletal and cardiac muscle appear to be the mos.t photosensitive of the tissues examined. Water content and distribution in skeletal muscle and liver were significantly influenced by temperature in 50% of the analyses performed showing a very strong bias toward UwinterU animals. Photoperiod effects were significant in 56% of the water parameters measured with a strong bias toward the two lower temperatures. Body weight was of significant influence in 16% of the 174 analyses performed. These data are discussed in terms of the effect of temperature upon ionregulatory mechanisms and the possible impact of photoperiod variations on endocrine systems influencing water-electrolyte metabolism.
Resumo:
:ofiedian lethal temperatures ( LT50' s ) were determined for rainbow trout, Salmo gairdnerii, acclimated for a minimum of 21 days at 5 c onstant temperatures between 4 and 20 0 C. and 2 diel temperature fluctuations ( sinewave curves of amplitudes ± 4 and ± 7 0 C. about a mean temperature of 12 0 C. ) . Twenty-four-, 48-, and 96-hour LT50 estimates were c alculated f ollowing standard flow-through aquatic bioassay techniques and probi t transformation of mortality data. The phenomenon of delayed thermal mortality was also investigated. Shifts in upper incipient lethal temperature occurred as a result of previous thermal conditioning. It was shown that increases in constant acclimation temperature result in proportional l inear increases in thermal tolerances. The increase i n estimated 96-hour LT50's was approximately 0.13 0 c. X 1 0 C:1 between 8 and 20 0 C. The effect of acclimation to both cyclic temperature regimes was an increase in LT50 to values between the mean and maximum constant equivalent daily temperatures of the cycles. Twenty-four-, 48-, and 96-hour LT50 estimates of both cycles corresponded approximately to the LT50 values of the 16 0 C. c onstant temperature equivalent . This increase i n thermal tolerance was further demonstrated by the delayed thermal mortality experiments . Cycle amplitudes appeared to i nfluence thermal resistance through alterations in initi al mortality since mortality patterns characteristic of base temperature acclimations re-appeared after approximately 68 hours exposure to test temperatures for the 12 + 4 0 C. group, whereas mortality patterns stabilized and remained constant for a period greater than 192 hours with the larger therma l cycle ( 12 + 7 0 C. ). NO s ignificant corre lations between s pecimen weight and time-to-death was apparent. Data are discussed in relation to the establishment of thermal criteria for important commercial and sport fishes , such as the salmonids , as is the question whether previously reported values on lethal temperature s may have been under estimated.
Resumo:
Two groups of rainbow trout were acclimated to 20 , 100 , and 18 o C. Plasma sodium, potassium, and chloride levels were determined for both. One group was employed in the estimation of branchial and renal (Na+-K+)-stimulated, (HC0 3-)-stimulated, and CMg++)-dependent ATPase activities, while the other was used in the measurement of carbonic anhydrase activity in the blood, gill and kidney. Assays were conducted using two incubation temperature schemes. One provided for incubation of all preparations at a common temperature of 2S oC, a value equivalent to the upper incipient lethal level for this species. In the other procedure the preparations were incubated at the appropriate acclimation temperature of the sampled fish. Trout were able to maintain plasma sodium and chloride levels essentially constant over the temperature range employed. The different incubation temperature protocols produced different levels of activity, and, in some cases, contrary trends with respect to acclimation temperature. This information was discussed in relation to previous work on gill and kidney. The standing-gradient flow hypothesis was discussed with reference to the structure of the chloride cell, known thermallyinduced changes in ion uptake, and the enzyme activities obtained in this study. Modifications of the model of gill lon uptake suggested by Maetz (1971) were proposed; high and low temperature models resulting. In short, ion transport at the gill at low temperatures appears to involve sodium and chloride 2 uptake by heteroionic exchange mechanisms working in association w.lth ca.rbonlc anhydrase. G.l ll ( Na + -K + ) -ATPase and erythrocyte carbonic anhydrase seem to provide the supplemental uptake required at higher temperatures. It appears that the kidney is prominent in ion transport at low temperatures while the gill is more important at high temperatures. 3 Linear regression analyses involving weight, plasma ion levels, and enzyme activities indicated several trends, the most significant being the interrelationship observed between plasma sodium and chloride. This, and other data obtained in the study was considered in light of the theory that a link exists between plasma sodium and chloride regulatory mechanisms.