27 resultados para Programming (Mathematics)
Resumo:
This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.
Resumo:
The purpose of this study was to determine the effect that calculators have on the attitudes and numerical problem-solving skills of primary students. The sample used for this research was one of convenience. The sample consisted of two grade 3 classes within the York Region District School Board. The students in the experimental group used calculators for this problem-solving unit. The students in the control group completed the same numerical problem-solving unit without the use of calculators. The pretest-posttest control group design was used for this study. All students involved in this study completed a computational pretest and an attitude pretest. At the end of the study, the students completed a computational posttest. Five students from the experimental group and five students from the control group received their posttests in the form of a taped interview. At the end of the unit, all students completed the attitude scale that they had received before the numerical problem-solving unit once again. Data for qualitative analysis included anecdotal observations, journal entries, and transcribed interviews. The constant comparative method was used to analyze the qualitative data. A t test was also performed on the data to determine whether there were changes in test and attitude scores between the control and experimental group. Overall, the findings of this study support the hypothesis that calculators improve the attitudes of primary students toward mathematics. Also, there is some evidence to suggest that calculators improve the computational skills of grade 3 students.
Resumo:
The topic of this research was alternative programming in secondary public education. The purpose of this research was to explore the perceived effectiveness of two public secondary programs that are aJternative to mainstream or "regular" education. Two case study sites were used to research diverse ends of the aJtemative programming continuum. The first case study demonstrated a gifted program and the second demonstrated a behavioral program. Student needs were examined in terms of academic needs, emotional needs, career needs, and social needs. Research conducted in these sites examined how the students, teachers, onsite staff, and program administrators perceived that individual needs were met and unmet in these two programs. The study was qualitative and exploratory, using deductive and inductive research techniques. Similar themes of best practice that were identified in the case study sites aided in the development of a teaching and learning model. Four themes were identified as important within the case study sites. These themes included the commitment and motivation of teachers and the support of administration in the gifted program, and the importance of location and the flow of information and communication in the behavior program. Six themes emerged that were similar across the case study sites. These themes included the individual nature of programming, recognition of student achievement, the alternative program as a place of safety and community, importance of interpersonal capacity, priority of basic needs, and, finally, matching student capacity with program expectations. The model incorporates these themes and is designed as a resource for teachers, program administrators, parents, and policy makers of alternative educational programs.
Resumo:
This research attempted to address the question of the role of explicit algorithms and episodic contexts in the acquisition of computational procedures for regrouping in subtraction. Three groups of students having difficulty learning to subtract with regrouping were taught procedures for doing so through either an explicit algorithm, an episodic content or an examples approach. It was hypothesized that the use of an explicit algorithm represented in a flow chart format would facilitate the acquisition and retention of specific procedural steps relative to the other two conditions. On the other hand, the use of paragraph stories to create episodic content was expected to facilitate the retrieval of algorithms, particularly in a mixed presentation format. The subjects were tested on similar, near, and far transfer questions over a four-day period. Near and far transfer algorithms were also introduced on Day Two. The results suggested that both explicit and episodic context facilitate performance on questions requiring subtraction with regrouping. However, the differential effects of these two approaches on near and far transfer questions were not as easy to identify. Explicit algorithms may facilitate the acquisition of specific procedural steps while at the same time inhibiting the application of such steps to transfer questions. Similarly, the value of episodic context in cuing the retrieval of an algorithm may be limited by the ability of a subject to identify and classify a new question as an exemplar of a particular episodically deflned problem type or category. The implications of these findings in relation to the procedures employed in the teaching of Mathematics to students with learning problems are discussed in detail.
Resumo:
This study is a secondary data analysis of the Trends in Mathematics and Science Study 2003 (TIMSS) to determine if there is a gender bias, unbalanced number of items suited to the cognitive skill of one gender, and to compare performance by location. Results of the Grade 8, math portion of the test were examined. Items were coded as verbal, spatial, verbal /spatial or neither and as conventional or unconventional. A Kruskal- Wallis was completed for each category, comparing performance of students from Ontario, Quebec, and Singapore. A Factor Analysis was completed to determine if there were item categories with similar characteristics. Gender differences favouring males were found in the verbal conventional category for Canadian students and in the spatial conventional category for students in Quebec. The greatest differences were by location, as students in Singapore outperformed students from Canada in all areas except for the spatial unconventional category. Finally, whether an item is conventional or unconventional is more important than whether the item is verbal or spatial. Results show the importance of fair assessment for the genders in both the classroom and on standardized tests.
Resumo:
The purpose of this study was to determine the extent to which gender differences exist in student attitudes toward mathematics and in their performance in mathematics at the Grade Seven and Eight level. The study also questioned how parents influence the attitudes of this grade level of male and female students toward mathematics. Historically, the literature has demonstrated gender differences in the attitudes of students toward mathematics, and in parental support for classroom performance in mathematics. This study was an attempt to examine these differences at one senior public school in the Peel Board of Education. One hundred three Grade Seven and Eight students at a middle school in the Peel Board of Education volunteered to take part in a survey that examined their attitudes toward mathematics, their perceptions of their parents' attitudes toward mathematics and support for good performance in the mathematics classroom, parental expectations for education and future career choices. Gender differences related to performance levels in the mathematics classroom were examined using Pearson contingency analyses. Items from the survey that showed significant differences involved confidence in mathematics and confidence in writing mathematics tests, as well as a belief in the ability to work on mathematics problems. Male students in both the high and low performance groups demonstrated higher levels of confidence than the females in those groups. Female students, however, indicated interest in careers that would require training and knowledge of higher mathematics. Some of the reasons given to explain the gender differences in confidence levels included socialization pressures on females, peer acceptance, and attribution of success. Perceived parental support showed no significant differences across gender groups or performance levels. Possible explanations dealt with the family structure of the participants in the study. Studies that, in the past, have demonstrated gender differences in confidence levels were supported by this study, and discussed in detail. Studies that reported on differences in parental support for student performance, based on the gender of the parent, were not confirmed by this study, and reasons for this were also discussed. The implications for the classroom include: 1) build on the female students' strengths that will allow them to enjoy their experiences in mathematics; 2) stop using the boys as a comparison group; and 3) make students more aware of the need to continue studying mathematics to ensure a wider choice of future careers.
Resumo:
Three grade three mathematics textbooks were selected arbitrarily (every other) from a total of six currently used in the schools of Ontario. These textbooks were examined through content analysis in order to determine the extent (i. e., the frequency of occurrence) to which problem solving strategies appear in the problems and exercises of grade three mathematics textbooks, and how well they carry through the Ministry's educational goals set out in The Formative Years. Based on Polya's heuristic model, a checklist was developed by the researcher. The checklist had two main categories, textbook problems and process problems and a finer classification according to the difficulty level of a textbook problem; also six commonly used problem solving strategies for the analysis of a process problem. Topics to be analyzed were selected from the subject guideline The Formative Years, and the same topics were selected from each textbook. Frequencies of analyzed problems and exercises were compiled and tabulated textbook by textbook and topic by topic. In making comparisons, simple frequency count and percentage were used in the absence of any known criteria available for judging highor low frequency. Each textbook was coded by three coders trained to use the checklist. The results of analysis showed that while there were large numbers of exercises in each textbook, not very many were framed as problems according to Polya' s model and that process problems form a small fraction of the number of analyzed problems and exercises. There was no pattern observed as to the systematic placement of problems in the textbooks.
Resumo:
Forty-five 12- and 13-year-old females attending Grade 7 in North York, Ontario were randomly selected from a group of 100 females who had volunteered to participate in a oneday hands-on workshop called It's Your Choice at Seneca College. The goals of this intervention were to broaden the career horizons of these students and to help them realize the need to continue mathematics and science through high school in order to keep occupational options unlimited. The young women were given a pre- and post-attitude survey to provide background information. In the month following participation in the workshop the students were interviewed in small groups (S students per group) to discover their perceptions of the impact of the workshop. The interviews revealed that participants felt that after the workshop their feelings of self-confidence increased, specifically with respect to working with their hands. Participants felt more aware of the usefulness and importance of the study of mathematics, science and technology, They also felt that It's Your Choice increased their interest in careers in these domains and helped them to see that these careers are viable choices for females. The interviews also revealed that many of the participants felt that in this society their roles and their choices were influenced and probably limited by the fact that they are female.
Resumo:
Forty grade 9 students were selected from a small rural board in southern Ontario. The students were in two classes and were treated as two groups. The treatment group received instruction in the Logical Numerical Problem Solving Strategy every day for 37 minutes over a 6 week period. The control group received instruction in problem solving without this strategy over the same time period. Then the control group received the treat~ent and the treatment group received the instruction without the strategy. Quite a large variance was found in the problem solving ability of students in grade 9. It was also found that the growth of the problem solving ability achievement of students could be measured using growth strands based upon the results of the pilot study. The analysis of the results of the study using t-tests and a MANOVA demonstrated that the teaching of the strategy did not significaritly (at p s 0.05) increase the problem solving achievement of the students. However, there was an encouraging trend seen in the data.
Resumo:
This thesis will introduce a new strongly typed programming language utilizing Self types, named Win--*Foy, along with a suitable user interface designed specifically to highlight language features. The need for such a programming language is based on deficiencies found in programming languages that support both Self types and subtyping. Subtyping is a concept that is taken for granted by most software engineers programming in object-oriented languages. Subtyping supports subsumption but it does not support the inheritance of binary methods. Binary methods contain an argument of type Self, the same type as the object itself, in a contravariant position, i.e. as a parameter. There are several arguments in favour of introducing Self types into a programming language (11. This rationale led to the development of a relation that has become known as matching [4, 5). The matching relation does not support subsumption, however, it does support the inheritance of binary methods. Two forms of matching have been proposed (lJ. Specifically, these relations are known as higher-order matching and I-bound matching. Previous research on these relations indicates that the higher-order matching relation is both reflexive and transitive whereas the f-bound matching is reflexive but not transitive (7]. The higher-order matching relation provides significant flexibility regarding inheritance of methods that utilize or return values of the same type. This flexibility, in certain situations, can restrict the programmer from defining specific classes and methods which are based on constant values [21J. For this reason, the type This is used as a second reference to the type of the object that cannot, contrary to Self, be specialized in subclasses. F-bound matching allows a programmer to define a function that will work for all types of A', a subtype of an upper bound function of type A, with the result type being dependent on A'. The use of parametric polymorphism in f-bound matching provides a connection to subtyping in object-oriented languages. This thesis will contain two main sections. Firstly, significant details concerning deficiencies of the subtype relation and the need to introduce higher-order and f-bound matching relations into programming languages will be explored. Secondly, a new programming language named Win--*Foy Functional Object-Oriented Programming Language has been created, along with a suitable user interface, in order to facilitate experimentation by programmers regarding the matching relation. The construction of the programming language and the user interface will be explained in detail.
Resumo:
The Robocup Rescue Simulation System (RCRSS) is a dynamic system of multi-agent interaction, simulating a large-scale urban disaster scenario. Teams of rescue agents are charged with the tasks of minimizing civilian casualties and infrastructure damage while competing against limitations on time, communication, and awareness. This thesis provides the first known attempt of applying Genetic Programming (GP) to the development of behaviours necessary to perform well in the RCRSS. Specifically, this thesis studies the suitability of GP to evolve the operational behaviours required of each type of rescue agent in the RCRSS. The system developed is evaluated in terms of the consistency with which expected solutions are the target of convergence as well as by comparison to previous competition results. The results indicate that GP is capable of converging to some forms of expected behaviour, but that additional evolution in strategizing behaviours must be performed in order to become competitive. An enhancement to the standard GP algorithm is proposed which is shown to simplify the initial search space allowing evolution to occur much quicker. In addition, two forms of population are employed and compared in terms of their apparent effects on the evolution of control structures for intelligent rescue agents. The first is a single population in which each individual is comprised of three distinct trees for the respective control of three types of agents, the second is a set of three co-evolving subpopulations one for each type of agent. Multiple populations of cooperating individuals appear to achieve higher proficiencies in training, but testing on unseen instances raises the issue of overfitting.
Resumo:
Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.
Resumo:
The aim of this thesis is to price options on equity index futures with an application to standard options on S&P 500 futures traded on the Chicago Mercantile Exchange. Our methodology is based on stochastic dynamic programming, which can accommodate European as well as American options. The model accommodates dividends from the underlying asset. It also captures the optimal exercise strategy and the fair value of the option. This approach is an alternative to available numerical pricing methods such as binomial trees, finite differences, and ad-hoc numerical approximation techniques. Our numerical and empirical investigations demonstrate convergence, robustness, and efficiency. We use this methodology to value exchange-listed options. The European option premiums thus obtained are compared to Black's closed-form formula. They are accurate to four digits. The American option premiums also have a similar level of accuracy compared to premiums obtained using finite differences and binomial trees with a large number of time steps. The proposed model accounts for deterministic, seasonally varying dividend yield. In pricing futures options, we discover that what matters is the sum of the dividend yields over the life of the futures contract and not their distribution.
Resumo:
Ontario bansho is an emergent mathematics instructional strategy used by teachers working within communities of practice that has been deemed to have a transformational effect on teachers' professional learning of mathematics. This study sought to answer the following question: How does teachers' implementation of Ontario bansho within their communities of practice inform their professional learning process concerning mathematics-for-teaching? Two other key questions also guided the study: What processes support teachers' professional learning of content-for-teaching? What conditions support teachers' professional learning of content-for-teaching? The study followed an interpretive phenomenological approach to collect data using a purposive sampling of teachers as participants. The researcher conducted interviews and followed an interpretive approach to data analysis to investigate how teachers construct meaning and create interpretations through their social interactions. The study developed a model of professional learning made up of 3 processes, informing with resources, engaging with students, and visualizing and schematizing in which the participants engaged and 2 conditions, ownership and community that supported the 3 processes. The 3 processes occur in ways that are complex, recursive, nonpredictable, and contextual. This model provides a framework for facilitators and leaders to plan for effective, content-relevant professional learning by placing teachers, students, and their learning at the heart of professional learning.
Resumo:
This thesis research was a qualitative case study of a single class of Interdisciplinary Studies: Introduction to Engineering taught in a secondary school. The study endeavoured to explore students' experiences in and perceptions of the course, and to investigate the viability of engineering as an interdisciplinary theme at the secondary school level. Data were collected in the form of student questionnaires, the researcher's observations and reflections, and artefacts representative of students' work. Data analysis was performed by coding textual data and classifying text segments into common themes. The themes that emerged from the data were aligned with facets of interdisciplinary study, including making connections, project-based learning, and student engagement and affective outcomes. The findings of the study showed that students were positive about their experiences in the course, and enjoyed its project-driven nature. Content from mathematics, physics, and technological design was easily integrated under the umbrella of engineering. Students felt that the opportunity to develop problem solving and teamwork skills were two of the most important aspects of the course and could be relevant not only for engineering, but for other disciplines or their day-to-day lives after secondary school. The study concluded that engineering education in secondary school can be a worthwhile experience for a variety of students and not just those intending postsecondary study in engineering. This has implications for the inclusion of engineering in the secondary school curriculum and can inform the practice of curriculum planners at the school, school board, and provincial levels. Suggested directions for further research include classroom-based action research in the areas of technological education, engineering education in secondary school, and interdisciplinary education.