28 resultados para Bethary river
Resumo:
This investigation of geochemistry and mineralogy of heavy metals in fine grained (<63^m) sediment of the Welland River was imdertaken to: 1) describe metal dispersion patterns relative to a source, identify minerals forming and existing at the outfall region and relate sediment particle size to chemistry; 2) to delineate sample handling, preparation and evaluate, modify and develop analytical methods for heavy metal analysis of complex environmental samples. Ajoint project between Brock University and Geoscience Laboratories was initiated to test a contaminated site of the Welland River at the base of Atlas Speciality Steels Co. Methods were developed and utilized for particle size separation and two acid extraction techniques: 1) Partial extraction; 2) Total extraction. The mineralogical assessment identified calcite, dolomite, quartz and clays. These minerals are typical of the carbonate-shale rock basement of the Niagara Peninsula. Minerals such as, mullite and ferrocolumbite were found at the outfall region. These are not typical of the local geology and are generally associated with industrial pollutants. Partial and total extraction techniques were used to characterize the sediments based on chemical distribution, elemental behaviour and analytical differences. The majority of elements were lower in concentration in the partial extraction technique; suggesting these elements are bound in an acid extractable phase (exchangeable, organic and carbonate phases). The total extraction technique yielded higher elemental concentrations taking difficult oxides and silicates into solution. Geochemical analyses of grain size separates revealed that heavy metal (Co, Ni, V, Mn, Fe, Ba) concentrations did not increase with decreasing grain size. This is a function of the anthropogenic mill scale input into the river. The background elements (Sc, Y, Sr, Mg, Al and Ti) showed an increase in concentration to the finest grain size suggesting that it is directly related to the local mineralogy and geology. Dispersion patterns ofmetals fall into two distinct categories: 1) the heavy metals (Co, Cu, Ni, Zn, V and Cr), and 2) the background elements (Be, Sc, Y, Sr, Al and Ti). The heavy metals show a marked increase in the outfall region, while the background elements show a significant decrease at the outfall. This pattern is attributed to a "dilution effect" ofthe natural sediments by the anthropogenic mill scale sediments. Multivariant statistical analysis and correlation coefficient matrix results clearly support these results and conclusions. These results indicate the outfall region ofthe Welland River is highly contaminated with to heavy metals from the industrialized area of Welland. A short distance downstream, the metal concentrations return to baseline geochemical levels. It appears, contaminants rapidly come out of suspension and are deposited in close proximity to the source. Therefore, it is likely that dredging the sediment from the river may cause resuspension of contaminated sediments, but may not distribute the sediment as far as initially anticipated.
Resumo:
The study area is situated in NE Newfoundland between Gander Lake and the north coast and on the boundary between the Gander and Botwood tectonostratigraphic zones (Williams et al., 1974). The area is underlain by three NE trending units; the Gander Group, the Gander River Ultramafic Belt (the GRUB) and the Davidsville Group. The easternmost Gander Group consists of a thick, psammitic unit composed predominantly of psammitic schist and a thinner, mixed unit of semipelitic and pelitic schist with minor psammite. The mixed unit may stratigraphically overlie the psammitic unit or be a lateral facies equivalent of the latter. No fossils have been recovered from the Gander Group. The GRUB is a terrain of mafic and ultramafic plutonic rocks with minor pillow lava and plagiogranite. It is interpreted to be a dismembered ophiolite in thrust contact with the Gander Group. The westernmost Davidsville Group consists of a basal conglomerate, believed deposited unconformably upon the GRUB from which it was derived, and an upper unit of greywacke and slate, mostly of turbidite origin, with minor limestone and calcareous sandstone. The limestone, which lies near the base of the unit, contains Upper Llanvirn to Lower Llandeilo fossils. The Gander and Davidsville Groups display distinctly different sedimentological , structural and metamorphic histories. The Gander Group consists of quartz-rich, relatively mature sediment. It has suffered three pre-Llanvirn deformations, of which the main deformation, Dp produced a major, NE-N-facing recumbent anticline in the southern part of the study area. Middle greenschist conditions existed from D^ to D- with growth of metamorphic minerals during each dynamic and static phase. In contrast, the mineralogically immature Davidsville Group sediment contains abundant mafic and ultramafic detritus which is absent from the Gander Group. The Davidsville Group displays the effects of a single penetrative deformation with localized D_ and D_ features, all of which can be shown to postdate D_ in the Gander Group. Rotation of the flat Gander S- into a subvertical orientation near the contact with the GRUB and the Davidsville Group is believed to be a Davidsville D^ feature. Regional metamorphism in the Davidsville Group is lower greenschist with a single growth phase, MS . These sedimentological, structural and metamorphic differences between the Gander and Davidsville Groups persist even where the GRUB is absent and the two units are in contact, indicating that the tectonic histories of the Gander and Davidsville Groups are distinctly different. Structural features in the GRUB, locally the result of multiple deformations, may be the result of Gander and/or Davidsville deformations. Metamorphism is in the greenschist facies. Geochemical analyses of the pillow lava suggest that these rocks were formed in a back-arc basin. Mafic intrusives in the Gander Group appear to be the result of magraatism separate from that producing the pillow lava. The Gander Group is interpreted to be a continental rise prism deposited on the eastern margin of the Late Precambrian-Lower Paleozoic lapetus Ocean. The GRUB, oceanic crust possibly formed in a marginal basin to the west, is believed to have been thrust eastward over the Gander Group, deforming the latter, during the pre-Llanvirnian, possibly Precambrian, Ganderian Orogeny. The Middle Ordovician and younger Davidsville Group was derived from, and deposited unconformably on, this deformed terrain. Deformation of the Davidsville Group occurred during the Middle Devonian Acadian Orogeny.
Resumo:
The water quality and fish populations of the Welland River were observed to decline with distance downstream. This coincided with increased agricultural , domestic and industrial waste loadings. The river upstream of the City of Welland received considerable loadings from agricultural sources. Centrarchids, sciaenids, ictalurids, cyprinids and esocids characterized this upper section of the river. Most of these species were tolerant of low dissolved oxygen concentrations and the high turbidity which prevailed there . The river near Port Robinson receives many industrial and domestic wastes as evidenced by the water quality data. The fish in this section were less abundant and the observed population was comprised almost solely of cyprinids. Further downstream, near Montrose, the Welland River received shock loads of chemical wastes that exceeded a specific conductance of ISiOOO ;umhos/cm. Few fish were captured at this site and those that were captured were considered to be transients. A review of the literature revealed that none of the common indices of water quality in use today could adequately predict the observed distributions. In addition to the above, the long-term trend (l3 yrs) of water quality of the lower Welland River revealed a gradual improvement. The major factor thought to be responsible for this improvement was the operation of the Welland Sewage Treatment Plant. The construction of the New Welland Ship Canal coincided with large fluctuations of the total solids and other parameters downstream. These conditions prevailed for a maximum of three years (1972- 1975)' Furthermore, spawning times and temperatures, geographic distributions, length-weight regressions and many other descriptive aspects of the ecology of some 26 species/ taxa of fish were obtained. Several of these species are rare or new to southern Ontario.
Resumo:
In this narrative self-study I retell and connect the stories ofmy personal journey with literacy from childhood to the present. I use narrative as both methodology and method as I story my life experiences and my personal encounters with literacy. The heart ofmy reflections comes from the pages of personal journals written and storied over many years of trying to make meaning of powerful literacy experiences in my life. Now, in going back through the stories and reconstructing meaning, I make connections between the memories along the journey and the place from which I now tell my story. The interpretations I construct give voice to beliefs 1 have lived by and illuminations to moments in time that I have come to see with new eyes as I have engaged in this inquiry. The journey and self-reflection within the pages of this inquiry provide understanding of the driving force behind my personal passion for literacy. I am better able to understand my motivations and share the stories that validate my personal and professional path through time.
Resumo:
At head of title: "Great tourist route of America".
Resumo:
Title on cover: Juvenile sketches, Niagara Falls & river.
Resumo:
Compliments of Passenger Department.
Resumo:
Previous editions of this work have appeared under the title: Gateways of tourist travel.